AD-ALOG 678 MASSACHUSETTS INST OF TECH CAMSRIDGE LAB FOR COMPUTE=ETC F/G 9/2
PROTECTING EXTERNALLY SUPPLIED SOFTWARE IN SMALL COMPUT
SEP 80 S T KENT ! COMPUTERS. (1)
UNCLASSIFIED MIT/LCS=TR-255 AL

0

. MASSACHUSETTS
LABORATORY FOR ﬁ% INSTITUTE OF

\

COMPUTER SCIENCE TECHNOLOGY

MIT/LCS/TR-255

PROTECTING EXTERNALLY
SUPPLIED SOFTWARE
| IN
SMALL COMPUTERS

Stephen Thomas Kent

m»ELECTER
N, JUN 51981 3

545 TECHNOLOGY SQUARE. CAMBRIDGE, MASSACHUSETTS 02139

Protectmg Externally Qupplied & Software
in Small Computers.

/0 Stephen Thomaskent \ . l . \ ’

39

/) September 1989
APPROVED 1 YOR P‘_ruLvn

’DISA NIBUDY LN ”_,I,“m

® Stephen Thomas Kent 1980

1Y) mzT/LC5/THR-2 33

This research was supported by IBM through discretionary funding made
available to the MLLT. Laboratory for Computer Science.

irorssion For
' uT1S GRARI f
| prIc 748 = Massachusetts Institute of Technology
gnannc\mcet;o d Lal)omtory for COmputcr Science .
: : /{1" Cambridge, Massachusctts (-
| i‘,«_m&ﬂ“ * 02139
Distribution/ e - ,
Availability Codes |
"7 jAvail and/or
Dist Special
) S
P(I Y WA re [7e

A -.,

Acknowledgments

A number of individuals have contributed in one way or another to the production
of this thesis and/or to my enjoyvable, extended stay at the Laboratory for Computer
Science. In this small space 1 can acknowledge only some of those who have aided
me in this endeavor. To those who are not included in this brief list T offer my
sincere thanks and an apology.

Dr. David Clark has been extremely helpful throughout this ordeal. Through our
weekly discussions he provided critical review, encouragemen' and numerous
suggestions that have naproved the readability of the final prodact. Despite his
many responsibilitics, he always strived to read drafts of chapters quickly and,
ofttimes, he succeeded. My readers, Prof. Liba Svobodova and Prof. Fernando
Corbato, contributed many helpful suggestions for improving the thesis and I thank
them for their perseverance in reading and commenting upon the manuscript.

In the six years T have spent at LCS | have learned much from casual conversations !
with my fellow students and the lunchtime sub-committee. While working on this

thesis | benefited immensely from such conversations, especially those involving

Allen Luniewski, Karen Sollins and Dave Reed. 1 also must thank Wayne Gramlich

for his assistance in rcsolving‘fc?\t formatting problems and Eliot Moss for his help !
with file transfer problems.

Of course, no list of acknowledgments is complete without mention of the two
women in my life: my mother and my wife. Although she has not been involved in
production of this thesis, my mother has provided support, counsel and love for
almost 30 years and | have benefited immensely from her numerous and varied
contributions to my life. | gratefully acknowledge the many important contributions
of my wife, Rachel. She has endured my protracted graduate carcer while pursuing
a doctorate of her own, an impressive task in its own right. Even when her own
rescarch has not proceeded smoothly, she has encouraged me and commiserated
with me. Her meticulous proofreading of this and other documents has been
excellent. | could not have written this thesis without her love and understanding.

Finally, | wish to acknowledge the support provided by 1BM through discretionary
funds made available to the M.LT. Laboratory for Computer Science,

Protecting Externally Supplied Software
in Small Computers

by
Stephen T. Kent

Submitted to the

Department of Electrical Engincering and Computer Science on 22 September 1980
in partial fullillment of the requirements for the Degree of Doctor of Philosophy.

Abstract

The increasing decentralization of computing resources and the proliferation of

personal and small business computers create new problems in computer security.
One such problem is the protection of externally supplied software, i.c., sofiware
supplied by other than the users/owners of these small computers. In the case of
personal and small business computers, proprietary software serves as the primary
example. In distributed systems comprised of autonomously managed nodes,
members of the user community may act as vendors of external software in a less
formal context. In these contexts dual security requirements arise: vendors require
encapsulation of their software to prevent release and o detect modification of
information, whereas uscrs require confinement of cxternal software in order to
control its access to computer resources. The protection mechanisms developed o
support mutually suspicious subsystems in centralized systems are not directly
applicable here because of differences in the computing environment. e.g., the need
to protect external subsystems from physical attacks mounted by owners of these
small computers.

This thesis employs two tools to achieve the sccurity requirements of vendors of
external software: tamper-resistant modules (TRMs) and cryptographic techniques.
The former provide physical sccurity, i.c., while the TRM is intact it prevents the
release or modification of information contained within and breaking into a TRM
results in destruction (erasure) of the sensitive information inside. Packaging all of
the sensitive components of a computer system (processor and storage) in a single
TRM is often impractical, but sclected portions of a system can be protected
effectively in this fashion. Cryptographic techniques are employed in two ways in

—~~

1

this application: to secure communication among TRMs and to protect information
held in physicaily unprotected storage outside a TRM.

These tools addiess the problem of encap&lming external software but do not
provide the confinement required by users. External software cun be confined in
two ways: through the use of a secure operating system in conjunction with a TRM
supplicd by a third-party or by providing separate processors for “endors and users
and enmploying some simple hardware to implement access con.rol for the user. .
Designing small computer sysiems incorporating these sccurity features requires
carcful analysis of a number of options in making tradeoffs among performance,
cost, flexibility and sccurity.

Keywords: computer security, protected subsystems, proprietary software,
cryptography, personal computers, distributed systems, Data Encryption Standard,
public-key cryptography

Table of Contents

Acknowledgments
Abstract

Table of Contents
Table of Figures
Table of Tables

Chapter One: Introduction

1.1 Mutivation
1.1.1 Protection Problems That are Mitigated by Decentralization
1.1.2 Protecting Proprictary Software in Centralized Systems
1.1.3 Effects of Decentralization on Protection of Exterral Software
1.2 Problem Definition and Solution Criteria
1.2.1 Protected Subsystems as a Paradigm for Externally Supplied
Software)
1.2.2 Solution Evaluation Critena
1.3 A Solution Approach
1.3.1 A System Modecl and Tamper-Resistant Modules
1.3.2 Two Approaches o Protecting External Software
1.3.3 Two Approaches to Mecting Clients” Security Requirements
1.4 Related Work
1.5 Thesis Outline
1.6 How to Read This Thesis

Chapter Two: The System Model, TRMs and Cryptography

2.1 The System Model Revisited
2.1.1 Variations on the Basic Model
2.1.2 Processor and Storage System Parameters
2.1.3 Other Peripherals
2.1.4 Basic Bus Characteristics
2.1.5 Graphic Conventions for Bus Transactions
2.1.6 Standard Bus Transactions

o ¢ W N

11

12
12
14
17
21
21

24
25
26
28
33
36
39
4

43

43
46
49
55
56
59
61

r ————

2.1.7 Bus Utilization 66

2.2 Tamper-Resistant Modules ' 67

2.2.1 TRM Characteristics 68

2.2.2 A Monolithic TRM Approach 71

2.3 Cryptographic Terminology, Concepts and Techniques 76

2.2.1 Terminology und Basic Concepts 17

| 2.3.2 Block Cipher Techniques 81

2.3.3 Suream Cipher Techniques 88

2.3.4 An Application Example: Secure Network-based Distribution of - 93

External Software

2.3.5 Paramcters for Actual Ciphers 91

2.4 Conclusions 9

Chapter Three: An Encrypted Bus Approach to Protecting 101

External Software

3.1 Configurations and Overview 102

3.2 Sccurity Requirements for the Encrypted Bus Approach 106

3.3 Securing Simple Transactions 109
3.3.1 Sccuring simple read Transactions 11 j

3.3.2 Securing simple write Transactions 122

3.3.3 Securing interrupt Transactions 129

3.4 Securing Aggregate Transactions 132

3.4.1 A Transfer Protocol for Data Aggregates 133

3.4.2 Sccuring aggregate read and aggregate write Transactions 135

3.5 Additional CBI Design Considerations 140

3.6 System Integration Issues 144

3.6.1 Interfacing Non-Secure Devices on the 170 Bus 144

3.6.2 System Initialization 146

3.6.3 Response to Potential Security Violations 148

3.6.4 Distributing TRMs and External Software 151

3.6.5 Secure Archival Storage Reloading Constraints 152

3.7 Conclusions 154

Chapter Four: An Encrypted Storage Approach to Protecting 156

External Software

4.1 Security Requirements in the Encrypted Storage Approach 159
4.2 Basic Techniques for the Encrypted Storage Approach 164
| 4.3 Techniques for Encrypted Transfer and Archival Storage 168
| 4.3.1 Version Differentiated Names and the Archival Unit VTT 168

===

4.3.2 Format of Transfer and Archival Units 169
4.3.3 170 Operations on T&A Storage 171
4.3.4 Robustness of the Archival Storage Protection Measures 173
4.3.5 Etfects on Performance, Storage Utihization and the Operating 173
System
44 Technigues for Sccondary Storage 177
41 The VT Hicrarchy 177
412 170 Operations on Sceondary Storage 181
4.3 Performance, Rebustness and Storage Unlization Issues 183
4.4 A Note on the Size of Secondary Storage Vs 187
4.5 Technigues for Facrypted Primary Memory 188
4.5.1 Downsizing and Storage of FDCs 190
-1.3.2 Downsizing of VIs: The Cryptographic Refresh Process 191
L33 AN Hicrarchy and VP Cache Management 194
454 Foervpuon and EDC Calculation for Cache Lines 199
4.6 Conclusions 208
Chapter Five: Multi-Vendor Systems and Client Security 212
Requirements
3.1 Contining Eaternal Software 213
511 Preventing Information [eakage in Simple Applications 214
5.1.2 Preventing Peakage i Distributed Applications 215
5.1.3 Controlling Access to Shared Resources R
3.2 Computer Systems Supplied by a ' Third-Party AR
521 Options for Software-Enforced Encapsulation 219
5.2.2 Distnibuting Bxternal Software i the Third-Paty Design AR
5.2.3 Distribating User-Written Fxternal Software in Distributed 223
Systents
53 Multu-"TRM Computer Systems 226
531 Configuration Options for the Multi-TRAM approach 127
532 A thvbiid Scheme for Distnibuted Systems 234
S:HConclusions 234
Chapter Six: Conclusions and Topics for Further Research 237
6.1 Review 237
6.2 Comparative Evatuation of the Encrypted Bus and Foceypted Storage 2490
Approaches
6.3 Applicability and Limitations 243
6.4 Topics for Further Rescarch 245
7

Appendix: Expansions of Acronyms Used in the Thesis 248
References 250
Biographical Note 253

Table of Figures

Figure 1-1: A Simple Model of the Systems of Interest

Figure 1-2: An Encrypted Bus Approach System Configuration

Figure 1-3: An Encrypted Storage Approach System Configuration

Figure I-4: A Multi-TRM System Configuration

Figure 2-1: The Basic Model for the Computer Systems of Interest

Figure 2-2: A Dual Bus System Model

Figure 2-3: Event Graphs and Timing Diagrams for Standard read and
write Transactions

Figure 2-4: Event Graph and Timing Diagram for a Standard interrupt
Transaction

Figure 2-5: Event Graphs and Timing Diagrams for Extended Standard
Transactions

Figure 2-6: Using a Single TRM to Protect a System

Iigure 2-7: Conventional and Public-Key Cipher Configurations

Figure 2-8: Providing Sccrecy, Authenticity and Integrity with Public-Key
Ciphers

Figure 2-9: Electronic Code Book Mode for Block Ciphers

Figure 2-10: In-biock and Additive Initialization Vector Techniques

Figure 2-11: Plaintext-Ciphertext Block Chaining (PCBC)

Figure 2-12: Autokey Stream Cipher Example

Figure 2-13: Cipher Feedback Mode Stream Cipher

Figure 2-14: Message Format for Secure Connection Application

Figure 3-1: Two System Configurations Employing TRMs with CBls

Figure 3-2: Two More System Configurations Employing TRMs with CBIs

Figure 3-3: Event Graph and 'Timing Diagram for an ECB Mode Secure
Read

Figure 3-4: Event Graph for a simple secure read

Figure 3-5: Timing Diagram for a simple secure read

Figure 3-6: Timing Diagram for Successive simple secure read Transactions

Figure 3-7: Event Graph for a simple secure write

Figure 3-8: Timing Diagram for a simple secure write

Figure 3-9: Timing Diagram for Successive simple secure write
Transactions

Figure 3-10: Event Graph for a secure interrupt

Figure 3-11: Timing Diagram for a secure interrupt

27
29
31
35

47
63

65

72
17
79

32
34
36
89
92
95
103
104
113

118
120
123
124
126
128

130
131

Figure 3-12: Event Graph tor an aggregate secure read

Figure 3-13: Tining Dragram for an aggregate secure read

Figure 3-14: Fvent Graph for an aggregate secure write

Figure 3-15: Trimine Diagram for an aggregate secure write

Figure 4-1: 1wo System Configurations Employing a TRM and an SSI

Figure 4-2: Two More System Configurations Employing a TRM and an
SSI

Figure 4-3: A Simple Modcl for Encrypted Storage Operations

Figure 4-4: Format of Sccure T&A Storage Media

Figure 4-5: Hicrarchic Organization of Secondary Storage VIT

Figure 4-6: Event Graph for a Read of an Encrypted Cache Line

Figure 4-7: Timing Diagram for a Read of an Encrypted Cache Line

Figure 4-8: Fvent Graph for a Cache Line Write

Figure 4-9: Timing Diagram for a Write of an Encrypted Cache Line

Figure 4-10; Timing Diagram for a Combined Read-Write Opcration

Figure 5-1: Sccure Installation of a User-Written, Distributed Subsystem

Figure 5-2: A Single Bus Multi-TRM System Configuration

Figure 5-3: A Dual Bus Multi-TRM System Configuration

Figure 5-4: Another Dual Bus Multi-TRM System Configuration

10

136
137
138
139
157
158

161
170
178
201
203
204
206
207
225
228
229
230

Table of Tables

Table 2-1: Characteristics of the Computer Systens of Interest
Fable 2-2: Bus Lines for the System Models
Table 2-3; Symbols Used in Exent Graphs and Timing Diagrams

54
57
60

Chapter One

Introduction

1.1 Motivation

The past several years have witnessed a marked growth in decentralization of
computing facilities. Evidence of this trend appears in the proliferation of personal
and small business computers and development of distributed computer systems
composed of autonomously managed computers. (This last cluss of computers is the
focus of much rescarch and is described in more detail later in this section.) This
trend is the result of a number of factors including decreasing hardware costs and a
desire to tailor computing resources to individual and organizational needs [7).
Improved protcction1 of information is often listed among the advantages accruing
from decentralization of computing resources [33]. In many cases decentralization
does make protection easier but at least one sccurity problem that has proven
tractable in centralized computers becomes more complex as a result of
decentralization. The characterization and solution of this problem is the subject of

this thests.

1.1.1 Protection Problems That are Mitigated by Decentralization

The simplest security mechanisms implemented in centralized computers provide

complete isolation of users, perhaps allowing total sharing of some files [29].

1’I'hc terms protection and security arc used throughout this thesis to describe techniques for
controlling who may access a computer and the information stored within it; they are not interpreted
to encompass threats such as natural disasters.

12

A e

Introduction

Decentralized computers implicitly provide isolation since cach user is supplicd with
his own computer. (In fact, some of these computers may support multiple users,
but the assumption is that these users are equivalent for protection purposes.)
Moreover, the user need not rely on personnel at a central facility 1o protect his data.
Thus simple isolation is better achieved using decentralized computers. More
sophisticated protection mechanisms in centralized computers permit users o
explicitly control which users may access specific files and what type of access is
permitted, e.g., reading or writing. Controlled sharing in decentralized systems is
readily accomplished through message transmission over a communication network.
Such sharing may simply involve transmitting files between users or may be based

on sophisticated schemes for managing distributed databases.

When a network is used to selectively share information, communication security
measures are required to protect the transmitted data from disclosure and
undetected modification in transit and to securely identify users to one another [16}]
(providing the basis for access control dccisidns). These communication security
measures may be provided in whole or part by the network or may be exclusively
the responsibility of the user, depending on the size and geographic range of the
user community, nctwork characteristics and uscr sccurity requirements.
Nonetheless, it is often argued that controlled sharing is better achieved in
decentralized systems since such sharing takes place only through message
cxchanges via a network rather than through shared memory interactions involving

an operating system and programs of other users [33].

Some security problems associated with borrowed programs also may be
mitigated in decentralized systems. The security concern here is that borrowed
software may contain a Trojan Horse [3], i.c., the software not only performs its
advertised function but also engages in malicious activitics. The assumption in this

case is that the lender of the software imposes no constraints on its use but that the

13

-—“-—.—u—-‘

Introduction

borrower wants o control access of the software to s data and he wants to prevent
the software from disclosing his data to other users. The protection mechanisims
required o control access of borrowed software 1o user data are the same for both
centrahized and decentralized systems. Preventing borrowed software from
disclosing data to other users is difficult or impossible in centralized systems [29] but
may be leasible in decentralized computers, since essentially the only means of
leaking mformation to the outside world 1s via a network, Thus if @ borrowed
program has no legitimate need for network access, or a very restricted requirement
tor such access, this problem is casily sohved. (Borrowed programs that make
significant use of a network as part of their normal function are not more casily

confined in decentralized systems.)

1.1.2 Protecting Proprietary Software in Centralized Systems

The preceding discussion indicates that decentralization of computing simplifies
the problem of protecting information in many cases. However, the problem of
protecting externally supplied software, i.e., software supplied by one party (the
vendor) for restricted use by another party (the clienr), becomes more difficult as a
result of decentralization. Proprictary software, sold or rented/leased by a vendor to
clients, is the primary example of cxternal software but some distributed systems
provide other examples, as described later. Vendors want to restrict clients’ access to
proprictary software, permitting execution but preventing disclosure of the software.
The concern here is that clients may illicitly re-distribute the sofiware or may study
the software to extract proprictary algorithms. Vendors also may require a sccure
accounting capability, including the ability to revoke a client’s access to proprietary
software (prevent him from executing the softwarc), in support of usage-based and
time-based billing policies. In centralized computers proprictary software usually is

offered (sold, rented or leased) for execution directly on a client’s computer.

14

. N J

L L T

Introduction

However, sometimes proprictary software is made available for a fee through a
service bureau (a computer facility that sells computer time and services). ‘The
protection measures available to a vendor depend on which way the software is

offered.

If proprictary software is executed on a client's computer, a number of ad hoc
technological protection measures are available to the vendor along with various
legal measures (trade-secret licensing, contracts containing non-disclosure clauses,
copyrights and patents) [21]. Some vendors do not explicitly attempt o protect their
software, believing that various vendor-supplied support services are critical to
markceting of the software and that simple thelt of the software is not a problem. In
many cases only object code is provided, in an cffort to conceal the algorithms
employed and to preclude maintenance by other than the vendor. Vendors may
even include extraneous code or engage in circuitous coding practices to deter a
client from extracting the underlying structure of the program or to demonstrate the
origin of code in disputes over authorship [8]. Some vendors employ a simple form
of cryptographic coding, in which a "bootstrap™ program decodes the proprictary
software prior to execution. These technological measures usually are not employed
lo protect databases and the only access revocation mechanism available to vendors

is the withholding of enhancements and bug fixes for the software.

If proprictary software is made available to clients through a service burcau, the
vendor may take advantage of operating system protection mechanisms that allow
cliecnts to execute but not rcad (copy) or modify the software, e.g., the ring
protection mechanisms of Multics [30]. These protection mechanisms may be quite
sophisticated, allowing the vendor to charge on a per-use or time basis, providing
quick revocation of access if a client fails to pay and protecting not only programs
but also databases associated with the proprictary software. However, clients using

proprietary software at a service bureau facility must trust the facility to safeguard

15

Introduction

their information, a problem that usually does not arise if the software is executed
on the client’s computer. The vendor also must trust the service burcau to act as his
agent, protecting his software and properly charging for its use. 'The client also must

pay for computing resources at the service bureau, an unnecessary expense for a

client with his own computer facilities. Morcover, clients with their own computer
facilitics may be further penalized by having to maintain and further process
proprictary software input or output at the service bureau or by transporting this

data between their facilities and the service bureau.

There is substantial disagreement among vendors as to the effectivencess of either
legal or ad hoc technological measures for protecting proprictary software. Yet
vendors of proprietary software do not seem to be deterred by this situation. In the
case of proprietary software executing on client equipment, the client is usually a]
business or other institution for which there is insufficient financial incentive to
attempt to subvert the ad hoc technological measures or to risk the possible
repercussions of violating the legal proleclior{ measures. Thus the lack of sound
technological protection mechanisms has not been a serious problem in this context.
Proprictary software made available through service bureaus can be protected from
clients and it is to the advantage of the service burcaus to provide such protection as
they gain financially by forcing users to procure time from the burcaus to run this
software. The use of service bureaus as agents for proprictary software also has the
advantage that a large number of users can gain access to the software but only a
small number of facility personnel nced be trusted by the vendor to protect the
software. In some instances the vendor of proprictary software may also operate the
service burcau, eliminating questions of vendor-scivice bureau mistrust. Finally,
some service bureau users cannot afford their own facilities and thus have no |

alternative to this way of using proprietary software.

16

Introduction

1.1.3 Effects of Decentralization on Protection of External Software

The same types of approaches to protecting externally supplied software are
available in the decentralized systems of interest, but the problem may be much
more severe in this context. If proprictary software is offered for direct execution on
chient machines the available technological and legal protection measures may prove
inadequate in this marketplace. Some evidence already exists that current owners of
personal computers engage in extensive informal trading of proprictary software, in
violation of contractual agreements and copyright laws. One supplier of proprictary
software for personal computers estimates that as many as 90% of the copics of his
software in use were not purchased from him [24]. il may be argued that this
alarming statistic is not representative of the market as a whole or that it is not
indicative of the fate of sales of such software in the future. In particular, it is
probably true that many of the curient owners of personal computers are themselves
employed in the computer field and are thus more likely to delve into their system
hardware and software and engage in these activities than would the average naive

uscr.

However, it is difficult to predict the moral climate that will characterize users of
such systems and there are other reasons to fear that legal means will be insufTicient
to protect proprictary software in the personal computer marketplace. The very size
of the projected personal computer marketplace and the possibility that a small
number of manufacturers may dominate this marketplace (resulting in a large body
of softwure compatible processors) make the emergence of "bootleg” copics of
proprictary software a likely event. Even in the case of relatively inexpensive
software, violations of copyright scem incvitable if an analogy to phonograph
records and home sterco systems can be made. Morcover, the growth of
communication networks makes distribution of both legitimate and purloined

copies of software casicr, further complicating the situation. Vendors could offer

17

i

Introduction

proprietary sofiware through service bureaus, to protect their interests, but this
negates many of the features brought about by decentralization, including improved
protection for user data. Owners of personal computers may balk at buying time
from a service bureau and paying for communications to access these centralized
facilities. Thus service burcaus are an inappropriute2 and perhaps an unacceptable

means of offering proprietary software for personal computers.

The preceding comments were directed primarily at personal computers but it
seems likely that many of these observations apply to the smalf business computer
market as well. Although the size of this market (in numbers of machines) may not
approach that of personal computers, small business computers may proliferate
more quickly because their utility is, presumably, readily demonstrable. Small
businesses generally have greater purchasing power than individuals and thus more
sophisticated (and more costly) proprietary software may appear, increasing the
profit potential for vendor and pirate alike, It is hard to project the moral and
financial climate that will develop and thus difficult to determine how severe a
problem informal trading or sales of bootleged proprietary software may become.
Nonetheless, it scems prudent Lo assume that protection of proprictary software will
be as important for small business computers as for personal computers. Again,
providing proprietary software through scrvice bureaus is contrary to the
decentralization trend and is probably unacceptable in this context. Thus there is a
great need for an improved means of protecting proprietary sofiware executed in

personal and small business computers.

A slightly different requirement for protection of external software arises in the

context of distributed systems comprised of autonomously managed nodes. In these

2Only proprictary software that makes usc of special facilitics not available at the client’s computer,
c.g., & flatbed plotter or array processing hardware, is best offered through a service bureau.

18

Introduction

distributed systems cach node (computer) operates under the direction of an
independent user, but the users co-operate to provide some services, e.g., distributed
databases. Systems of this sort are a topic of current rescarch and there are no
extant examples nor experience to draw upon. Nonetheless, one can project
protection requirements associated with a form of externally supplied software in
this environment, i.e., software produced by a user/vendor at once node for
execution at nodes throughout the system. As an example, consider a distributed
database that is fully replicated at each node for robustness and for case of access.
The database may contain some information that should not be accessible to some
uscrs, even though every node maintains a copy of the database. 'Thus cach user
must rely on the database management software to enforce some advertised access

control policy at all the nodes.

In the case of a distributed database, the software at each node should prevent
unauthorized reading or updating (via messages) by other nodes. It also should
prevent unauthorized reading and detect unauthorized update attempts by the node
owner. Although it might be possible o prevens a node owner from attempting
unauthorized updates to the database, such update attempts, if detected, will not
affect the integrity of the distributed database as a whole. This is because
distributed systems must be prepared to cope with local outages, e.g., a disk crash at
a node, without compromising the integrity of the entire database. Thus, if the
software at a node determines that a portion of its copy of the database is modified
as a result of an attempted unauthorized update by the node owner, the software

will treat that portion as damaged, and not affect other nodes.

In general, in these distributed systems, it scems desirable to be able to install
software at a node (with the permission of the node owner) which can be protected
from unauthorized disclosure and undetected modification. The availability of

mechanisms that provide such protection for external software enhances

19

'N: o

Introduction

significantly the flexibility of distributed systems composed of autonomous nodes.
For example, distributed instances of extended type managers [33] could be created
at one node and made available throughout the system in a secure fashion. Objects
could be created at one node and transmitted to other nodes with the assurance that
only the type manager for the objects would be able (o examine and "appropriately”
modify the representation of the objects. Although a number of other mechanisms
are required to support this sort of object migration, the ability to protect copies of a
distributed type manager at each node (from attacks by the node owner) is central to
the concept. These security requirements cannot be met by the use of a centralized
computing facility without seriously compromising the distributed nature of these

systems.

The preceding discussion has shown how the need for protection of externally
supplied software in the decentralized systems of interest differs, in some respects,
from the need for such protection in centralized systems. First, the legal and ad hoc
technical measures employed to protect proprictary software executing on client
computers may be inadequate in the case of decentralized systems. Sccond, use of
proprietary software offered through service bureaus negates many of the
advantages of decentralization and thus may be unacceptable to users of personal
and small business computers. Finally, distributed systems composed of
autonomous nodes present new examples of externally supplied software which, if
they can be adcequately protected, could significantly enhance the flexibility of such
systems. This suggests that improved technological measures for protecting
externally supplicd software for execution on clicnt computers are required for the
decentralized computcr systems described in this section. The next section provides
a more precise statement of the problem and establishes criteria by which proposed

solutions will be evaluated.

Introduction

1.2 Problem Definition and Solution Criteria

The preceding section identified two examples of externally supplied software
that require protection in the decentralized systems environment: proprictary
programs for personal or small business computers and distributed applications
software for certain types of distributed systems. This section examines in greater
detail the security requirements associated with these examples and abstracts from
them a gencral statement of the problem to be solved. The concept of protected
subsystems in centralized systems is introduced and modified for use in the
decentralized systems context. Protected subsystems serve as the model for
discussing protection of external software. Some criteria for acceptable solutions are

presented and some solution approaches are cvaluated with respect to those criteria.

1.2.1 Protected Subsystems as a Paradigm for Externally Supplied

Software

As noted in the preceding section, vendors require that proprietary software
(programs and attendant databases) be protected from disclosure and re-
distribution. In the extreme, disclosure may result in the complete exposure of the
inner workings of the program, enabling the attacker not only to make copies of this
software but also to understand the algorithms well enough to produce his own,
equivalent software. less severe disclosure may occur if only portions of the
software arc exposed or if only hints as to the algorithms employed in the program
can be cxtracted, requiring significartly more cffort by an attacker to gencrate
cquivalent software. On the other hand, it may be possible to re-distribute
programs without knowing their content, e.g., if the programs were encrypted but
the necessary cryptographic variables were not unigue to a single client. For
proprietary software that is rented or leased, a vendor may require a secure

accounting capability, including a revocation mechanism, in support of usage- or

21

Introduction

time-based billing policies. Finally, clients may wish to protect themselves from

proprictary software, treating it as a potential Trojan Horse.

In the distributed systems context described above, users acting as vendors of
external software have analogous security requirements. Here there may not always
be a need to prevent disclosure of the programs (the algorithms used may not be
considered proprietary) but databases associated with this software probably require
conccalment, as explained carlier. There is also a need to detect attacks that violate
the integrity of the software, to prevent spurious information from being propagated
throughout a distributed system application. For example, a query directed to a
node maintaining a copy of a replicated database should either elicit a "correct”
response or should go unacknowledged, rather than returning a response based on
data that has been modified as a result of tampering. Although it might be
siggested that externally supplied software should be protected from modification,
it was noted above that merely detecting such attacks provides adequate security and
is in keeping with the autonomous nature of the nodes. In particular, it is usually
assumed that a user may "unplug” his node from the communication network,
making all locally resident software and databases inaccessible to the remainder of

the distributed system.

A general statement of security requirements for external software, from the
standpoint of vendors, can be abstracted from the preceding discussion. the
requirements are quite similar to those usually associated with protected subsystems
in centralized systems, although some slight modifications are necessary to account
for the scope of attacks to be considered. Schroeder {31] defines a protected
subsystem as "a collection of programs and data bases that is encapsulated so that
other executing programs can invoke only certain component programs within the
protected subsystem, but are prevented from reading or writing component

programs or data bases, and are prevented from disrupting the intended operation

2

o o

Introduction

of the component programs.” From the standpoint of vendors, external software
should be treated as protected subsystems with the caveat that modification
(writing) and disruption by physical attacks need not be prevented, only detected.
Note that detecting modification of code is often critical to preventing disclosure,
¢.g., if an attacker can undetectably modify code, he might cffect disclosure by

changing an address used in an output operation so that the program outputs itself?

The protected subsystem concept also models closely the security requirements of
clients (users) with respect to external software. Restricting software so that it is
granted appropriate access privileges 1o the minimal collection of data and programs
required to perform its advertised function and so that it does not release that data
to others is referred to as confinement [19]. Clients require confinement of
externally supplied software to prevent release or modification of their own software
and other externally supplicd software. Clients also can employ confinement
measures 1o restrict access of external software to various system resources. Thus
interactions between external sofiware provided by different vendors or between
externally and locally supplied software should be characterized by mutual suspicion
and protection from program-based attacks should be symmetric for both classes of

software.

This discussion points out that vendors and clients have dual security
requirements. Vendors require external software to be protected against program-
based or physical attacks that result in relcase or undetected modification of
information or invocation at other than specified cxternal interfaces. They also
require that this software not be re-distributable. Clients require external software
to be confined, i.e., they require protection from program-based attacks launched by
external software that would result in unauthorized release, modification or j

invocation of other externally supplied or locally produced software. Clients also

require the ability to control the use of computer resources by external software,

23

Introduction

Although these requirements can be combined into a fairly uniform statement about
supporting mutually suspicious subsystems and conlinement, the above-noied
dichotomy between vendor and client requirements is important since it suggests an
appropriate division of responsibility for achieving these requirements. The
primary goal of this thesis is the design of computers that meet vendor security
requirements, although systems that meet both sets of requirements are described in

Chapter S.

1.2.2 Solution Evaluation Criteria

In addition to meeting the security requirements noted above, protection
mechanisms for use with externally supplied software in decentralized computers

should meet some additional criteria.

Deccentralization The protection mechanisms must themselves be decentralized.
The rationale here is that centralized approaches to providing
protection tend to negate the advantages gained from
decentralization,

Effectiveness The mechanisms should provide a unified approach to meeting
the security requirements over a broad spectrum of attacks. To
provide a given level of security, based on an anticipated threat
environment, only parameters of the mechanisms should be
changed, not the mechanisms themselves.

Generality/Flexibility
The protection mechanisms should be applicable to a wide range
of applications cxecuting on a variety of system configurations
and equipment. The mechanisms should not be dependent un a
particular technology or equipment type.

Low Cost The cost of equipment required to implement the protection
mechanisms must not be prohibitive. The "bottom line” is that
the use of the protection mechanisms should reduce losses by
more than the cost of the mechanisms themselves.

Introduction

Good Performance
The addition of protection mechanisms to a computer often
degrades performance. However, one must strive to minimize
the severity of any performance degradation.

Transparency Protection mechanisms should be unobtrusive, so that writers of
external software need not be very much aware of them. These
mechanisms should have little or no cffect on the design of
external software.,

This collection of criteria tends to rule out most measures currently employed to
protect proprictary software. For example, use of service burcaus to offer external
software is ruled out because it negates the advantages gained from decentralization.
The ad hoc measures described in section 1.1.2 do not meet the effectiveness
criterion. These measures also do not provide a unified approach to protection nor
are they parameterizable to provide different levels of sccurity for different
environments. The protection measures described in the next section attempt to

meet these criteria.

1.3 A Solution Approach

In order to meet the security requirements and cvaluation criteria established in
Scction 1.2, a combination of physical, cryptographic and software protection
measures are employed. Information stored or processed in computer system
components is protected from physical attacks resulting in disclosure or undetected
modification in one of two ways: by providing physical protection for a componznt
or by using cryptographic techniques to conceal and error check information stored
in or transmitted by the component. These basic techniques meet the security
requirements of vendors of external software and are sufficient in situations where
all of the external software executed on a computer is provided by a single vendor.

In more elaborate systems, where external software is supplied by several vendors or

25

eI R S DD TP A SO TP, i M gt SR s 2 T Sy M

Introduction

where external software interacts with client-supplied software, more conventional
hardware and software security measures are employed in conjunction with the
preceding techniques to provide the security required by mutually suspicious

subsystems. This section bricfly describes the proposed solution approach.

1.3.1 A System Model and Tamper-Resistant Modules

Before discussing the proposed solution approach, it is necessary to introduce a

stimple model of the computer systems of interest. The model, shown in Figure 1-1,

consists of a processor (CPU), three levels of storage: primary memory (P-MEM), l
secondary memory (S-MEM) and transfer and archival storage (T&A), and various
170 peripherals, e.g.. terminals or network interfuces. The only unusual component
in this model is the transfer and archival (T&A) storage. This level of storage is used
in two ways: vendors may transfer (distribute) copies of external software to clients
using this level and external software may use it for secure archival storage, hence
the name. (Vendors also may distribute external software via communication
networks.) Storage media used at this level must be demountable and the files
contained therein are usually viewed as outside of the file system proper. These two
characteristics distinguish T&A storage from secondary memory, i.e., secondary
memory need not be demountable and it contains the file system. The system
components are connected by a bus used for addressing and data transfer, like the
DEC UNIBUS [9] or the IEEE S-100 bus [11]. This architecture is typical of current
personal and small business computers and serves as the model for the computer

systems of interest.

If no precautions were taken, it is apparent that external software exccuting on

this hardware could be attacked in a number of ways that would violate the security

requirements of vendors. Physical attacks Jaunched against the processor, bus or

any of the storage devices could result in disclosure or undetected modification of

26

——— T
Introduction
CPU
P-MEM S-MEM T&A other peripherals

Figure 1-1: A Simple Model of the Systems of Interest

information. (Other peripheral devices included in the model are not sccurity
relevant since they do not store or process sensitive information.) [t is obvious that
some form of physical protection is required, at least for the processor if not other
components. To evaluate the results of physically protecting portions of the system,
the concept of a ramper-resistant module {TRM) is introduced. All information
contained within a TRM is protected from disclosure and undetected modification
in the following sense. As long as the TRM is intact, data inside the module cannot
be discerned or modified by an attacker and if the TRM is breached the sensitive
data within is destroyed (crased). The implementation of TRMs will vary
considerably depending on the value of the external software being protected and
the perceived sophistication of potential attackers. For example, packaging
components on a single VLSI chip may provide adequate protection in some cases
whereas permancently scaled, scamless metal containers may be required in other

cnvironments,

This thesis does not address the detailed problems of engineering tamper-
resistant modules, but rather assumes that TRMs can be constructed to provide

whatever level of physical security is required to protect external software in the

27

introduction

systems of interest. However, some observations can be made about characteristics
of TRM-packaging. For example, TRM-packaging usually is not free and the cost
increases with the volume of the TRM. Maintenance of components in a TRM may
be difficult or impossible (if the TRM is permanently scaled). TRM-packaging may
impose constraints on system growth and may limit equipment selection. Since
sensitive data within a TRM must be destroyed if the TRM is opened, it may be
difficult to package large quantities of non-volatile storage. Encapsulating
demountable storage media in TRMs also may pose problems. These and other
considerations suggest that packaging an entire computer within a single TRM,
supplied by a vendor, is not an ideal way to protect external software provided by
that vendor. Many of the shortcontings of TRM packaging can be avoided or at
feast mitigated by using TRM packaging in conjunction with cryptographic

techriques.

1.3.2 Two Approaches to Protecting External Software

There are two basic ways to use cryptography in conjunction with TRM
packaging: the encrypted bus approach and the encrypted storage approach. In the
encrypted bus approach, the computer system is divided into several pieces, each
contained in a TRM. Communication between the TRM-packaged pieces is
provided by a physically unprotected bus. Here cryptographic techniques are used
to secure inter-TRM communication over the unprotected bus. In the encrypted
storage approach, the processor and some memory are packaged in a single TRM
and all other storage is physically unprotected. Here cryptographic techniques are
used to protect data held in physically unprotected storage and transmitted over the
unprotected portions of the bus. Both approaches offer an cffective, decentralized
mcans of protecting external software but they differ in how well each meets other

criteria.

28

F ' ‘

Introduction

CcpPU

[eoo]

[[or]

S-MEM T&A

P-MEM other peripherals

Figure 1-2: An Encrypted Bus Approach System Configuration

Figure 1-2 illustrates one of several system configurations based on the encrypted
bus approach. In this configuration the processor and primary memory reside in
one TRM whereas secondary and T&A storage devices are packaged in separate
TRMs. (The bold boxes about these components represent the TRM packaging.)
Communication among the TRMs is encrypted on the physicaily unprotected bus.
Partitioning the system in this fashion reduces some of the TRM packaging
problems, e.g., this design results in smaller TRMs and it supports expansion
through adding or changing TRMs. It may c¢ven be possible to provide TRM-
packaged demountable media in this design for T&A storage. although secure
network communication offers a more practical means of distributing external
software. Since all of the security relevant system components are protected by
TRMs only the bus can be attacked. To counter these attacks, cach TRM is
cquipped with a cryprographic bus interface (CBI). The CBIs employ cryptographic
techniques to conceal and crror-check data and addresses transmitted on the bus,

thus preventing disclosure and detecting modification attacks.

T P,

29

r T —————

introduction

In many respects the bus functions us a niniature communication network in

which bus operations correspond 10 messages. 'The attacks to which bus operations

may be subjected are the sume as those encountered in gencral purpose
communication networks, e.g., release of message contents and message stream
modification [16]. Thus communication sccurity techniques can be applied to
sccure bus operations. Howcever, bus communication is very special and many
standard communication security measures are not directly applicable here. For
example, bus transactions take place at very high speeds with low delay and invalve
very small quantities of data. Protection mechanisms must be able to sustain
maximum transaction rates, introduce little or no delay on transactions and
minimize the number of additional bits transmitted for security purposes. Yet the
data and addresses in bus operations must be concealed and checked to verify that
they are properly ordered and not modified in transmission.

However, some of the spectal chacicteristics of bus communication simplify the
task of sccuring bus operations. Most bus communication is very stylized in nature
and this can be used to advantage in designing the encrypted bus protection
measures. For example, one can take advantage of the fact that data transfers
between primary memory and secondary or T&A storage involve daia aggregates
(e.g.. disk sectors) that can be protected as a whole, rather than on a per-bus-
opceration basis. The high reliability and overall simplicity of bus communication
simplifics bus protection measures, avoiding the neced to provide efficient error
recovery and/or to handle out-of-order message arrival. The cryptographic
techniques developed for the encrypted bus approach are specially engineered to
take advantage of the eccentricities of bus communication while keeping up with
high transaction rates and minimizing overhead (delay and extra bits transmitted).
These technigues also cope with the problems posed by having TRM-packaged and

standard devices connected to the same bus, J

30

Introduction

Computer system designs based on the encrypted bus approach satisfy the criteria
for decentralization, effectiveness, good performance and transparency and they are
fairly general. Although this approach solves many of the problems encountered in
trying to package an entire computer as a TRM, some problems still remain. For
example, in partitioning the system, the pieces must not become too small or the
cost of TRM-packaging and CBIs will become excessive. [t probably is not practical
o TRM-package demountable media, yet such media may be required for archival
storage even if external software is distributed via networks. Problems in crasing
large quantities of non-volatile storage and the need for periodic maintenance may
preclude packaging some storage devices as TRMs, The need to enclose all security
relevant components in TRMs also may limit cquipment choices. Thus this
approach is not as flexible as might be desired and the cost of TRM packaging may

be a problem.

CPU

=

P-MEM S-MEM* T&A* other peripherals

Figure 1-3: An Encrypted Storage Approach System Configuration

Figure 1-3 shows an encrypted storage approach system configuration
comparable to the encrypted bus approach design in Figure 1-2. In this design the

processor and primary memory are contained in a single TRM but secondary and

31

Introduction

I&A storage devices and the bus connecting these devices to the TRM are all
physically unprotected. (The asterisks in the figure indicate storage containing
encrypted data) The TRM is cquipped with a secure storage interface (SSI) that
employs cryptographic techniques to conceal and error-check data stored in these
devices, to prevent disclosure und detect modification. This design provides
excellent flexibility, generality and low cost. For example, the problem of building a
TRM capable of erasing large quantities of non-volatile storage is avoided in the
illustrated design since secondary and T&A storage is outside the TRM. All
equipment outside the TRM is "off-the-shelf,” allowing the clicuts great flexibility
in selecting components and reducing costs. The fact that this design requires only

one special device, an SSI, also contributes to its low cost and simplicity.

In the encrypted storage approach, data is aggregated into storage units that are
rcad/written as an entity, c.g.. groups of files that arc archived and reloaded
together (at the T&A storage level) or disk sectors (at the secondary storage level).
Each storage unit is encrypted independently, in a fashion that is a function of both
its address (or name) and a version tag, and an error detection code is associated
with cach unit. A table is maintained recording the current version tag associated
with each storage unit. (This table is either contained wholly inside the TRM or it is
stored outside the TRM and is protected using these measures recursively.) These
techniques not only conceal the contents of storage very cffectively, but atlow the
SS1 to determine if a storage unit returned as the result of a read operation is from
the correct location and if it is the most recent data stored at that location. The
constraint that only the most recent copy of a storage unit be returned must be
tempered in some circumstances for archival storage and it is not applicable to

transfer storage (since such storage is read-only).

Except for designs in which primary memory is encrypted, i.e., located outside

the TRM, the cryptographic techniques employed in the encrypted storage

32

Introduction

approach do not encounter stringent performance constraints. ‘The space required
for error detection codes and for version tags is a very small fraction of that devoted
to "real” data storage, except in the case of encrypted primary memory. I primary
memory is encrypted, it is essential that the processor be equipped with a cache
memory, to reduce the fraction of space devoted to overhead and to minimize the
impact of delays imposed by encryption. Hicrarchic structuring of the version tag
tables for sccondary storage and primary memory avoids the need to devote large
amounts of space to VI'I's and appropriate caching of portions of the hierarchy
minimizes the performance impact of this structuring. Computer system designs
based on the encrypted storage approach satisfy the criteria for decentraltzation,
effectivencss, flexibility, low cost and arc fairly general. These designs are not as
transparent as those developed under the encrypted bus approach, largely due to the
need to maintain VTTs. Their performance is generally good, except for those

configurations in which primary memory is encrypted.

1.3.3 Two Approaches to Meeting Clients’ Security Requirements

The preceding section briefly described two approaches to meeting the security
requirements of vendors. These approaches protect external software supplied by a
single vendor but they do not address the problems of mecting client security
requircments or of exccuting external software from multiple vendors on a single
computer system. These two problems are quite similar in that both require
protection mechanisms that allow software from vendors and from the client to
interact as mutually suspicious subsystems. This can be accomplished in two ways.
A trusted third party can supply a TRM-packaged computer, based on one of the
two approaches described in the preceding section, with a secure operating system.,
Both the clicnt and the vendors must trust this computer to execute their software

while meeting one another’s security requirements. Vendors can transfer cexternal

Introduction
software w such computois ¢! »ading o through the third-party or by !
using cryprographic techme key ciphers [26). This approach
requires some standane . -ovenal software from multiple
vendors can be exeew ~ent under the secure operating
, system provided. The n : hoth vendors and chients must rely
on the third-party 1o produ. = catimg ssstem and a secure 1RM-based

computer.

An alternative 1o this approach is o allow cach vendor o supply his own TRM-
packaged processor and memory and to conneat these modules together under the
control of a client processor. Figure -4 allustrates one way this could be
uccbmplishcd. In this example two vendors have supphied FRMs, cach containing a
processor and primary memory. Sccondary and T&A storage are shared among the
TRMs and the client processor. The client processor controls access to these and
other shared system resources through an access control bus coupler (ACBC). The
access control mechanisms used here are similar to those employed in centralized
systems but are somewhat simnler to implement here due to the hardware isolation
provided by the design. This approach has the advantage that no mutual trust js
required since cach vendor supplies his own TRM. This approach allows vendors to
select their own processor base but some standardization of TRM interfaces and
operating system interfaces is still required. 1t also remains to be seen if the cost of

TRMs can be reduced to a point at which this becomes economically feasible.

In distributed systems members of the user community need to act both as clients
and as vendors in writing and using external software. In fact, a user may act as both
client and vendor for the same softwarc. A combination of the preceding two
approaches can be employed to meet this complex security requirement. Each node
in the distributed system can consist of a client processor and a TRM supplicd by a

third-party, configured as in Figure 1-4. The third-party TRM is uscd to execute

34

Introduction

—
CPU S CPU S
[L 1]
P-MEM P-MEM
CPU
P-MEM S-MEM* T&A* other peripherals

Figure 1-4: A Multi-TRM System Configuration

ACBC

external software supplied by other members of the user community, treating cach

user as a separate vendor. To solve the problem of vendors being their own clients,

another third-party TRM is used to distribute the locally produced external

software. In this fashion a would-be vendor submits his software (source code) to an

installation server TRM which compiles code and distributes it sccurely to the

TRMs at the user nodes. Since this software is not proprictary, the client-users can

35

Introduction

be allowed to review the source code and decide if they want to use the software. In
this fashion users can decide for themselves if some distributed application
implements an advertised security policy that achieves their requirements for

confinement.

1.4 Related Work

The central topic of this thesis, the development of protection measures for use
with externally supplied software in decentralized computing facilities, has received
little attention in the open literature. The general problem of protecting
information stored in centralized computer systems has been the subject of much
research. (Sce [29] for an excellent bibliography.) Most of this rescarch deals with
protection of information from program-based attack or with controlling physical
access to central computer facilitics. Although the concepts developed in such
rescarch are applicable to the problem of protecting external software in
decentralized systems, most of the detailed mechanisms developed for centralized
systems are not relevant to this "physically hostile” environment. The major
exception is the use of a secure operating system to provide protected subsystems in
third-party, multi-vendor computer system designs. Multi-vendor systems in which
each vendor supplies his own TRM also may make use of some conventional access

control mechanisms in managing shared resources.

There has been relatively little published research dealing with protection
problems in distributed systems. Much of this research assumes that the nodes that
make up the system are under the control of a single authority, e.g.. sce [5], as
opposed to the autonomous nodes considercd in this thesis. In designing distributed
systems composed of autonomous nodes, usually the tacit assumption is made that

software executing at remote sites cannot be protected from physical or program-

36

Introduction

based attack by the user at the node if the concept of nodal autonomy is to be
supported. Thus the protection measures developed for such systems tend to be
limited in scope [33]. One report [20] proposed using cryptographic mcethods to
protect data objects in distributed systems, allowing the objects to be transmitted to
nodes for examination while being able to detect modification of the objects upon
return to their "owner.” However this is a very limited facility that does not address

the full range of protection problems described and solved in this thesis.

A substantial body of literature deals with legal protection for proprictary
software (sce [21]), but not with the development of technological measures 1o
protect such software. A notable exception is a patent [1], issued in September 1979,
which proposes cryptographic mechanisms for protecting proprictary software for
use with personal computers. The patent describes a microprocessor designed to
exceute enciphered programs. This design is superficially similar to the encrypted
storage approach configuration illustrated in Figure 1-3 but it differs in a number of
ways. For example, the protection provided b'y this patented design applies only to
object code and read-only databases, not to modifiable databases. (The inventor
claims that the mechanisms could be used to protect such databases but significant
cryptographic weaknesses would become apparent in such applications.) This
restriction precludes a number of applications both for proprictary software and for

distributed systems software.

The same cryptographic limitations that preclude use of this design for
modifiable databases also restricts the design to exccuting only onc program per
microprocessor chip. This is in marked contrast to the system designs proposed in
this thesis each of which is capable of executing an essentially unlimited number of
program products from vendors. In fact, the cryptographic technigues presented in
the patent are capable of concealing no more than one primary memory image

worth of code/data, so secondary and T&A storage mechanisms are inapplicable]

37

Introduction

here More importantly, this patented xniénqm>ccssor dusign includes no facilities
for detecting modification of code or data. As noted earlier, the lack of such
measures permits some attacks that could result in disclosure of the code or data, so
this design does not even provide complete protection against disclosure. The lack
ol modification detection mechanisms also severely limits the range of applications
which can be protected by this design, e.g.. the design is incapable of providing
secure accounting or revocation facilities or of supporting distributed systems
software as described above. Thus this patented design differs in many respects

from those presented in this thesis.

The arcas which are most directly related to this thesis are cryptography and
communication security rescarch. This thesis does not develop cryptographic
algorithms but it does rely on an understanding of basic cryptographic technigues
and of characteristics of modern ciphers, e.g., the Data Encryption Standard {23] and
the RSA public-key algorithm [26], in developing the encrypted bus and encrypted
storage approach of protection mechanisms. The problems of protecting
information transmitted on a bus in the computer systems of interest differ
somewhat from those encountered in protecting information in general purpose
communication networks, but communication sccurity research does offer some
help. For example, rescarch in this area provides a taxonomy of threats that are
applicable to the thesis problem and offers techniques for dealing with these threats
in general purpose communication environments. Some of these techniques are
directly applicable to the problems encountered in this thesis and others can be

modified to meet the specialized requirements encountered in this context.

Some rescarch has been carried out on the use of cryptography to protect files in
centralized systems. Commercially available software developed at IBM [12]
provides key management facilities and encryption/decryption primitives that can

be used with files on secondary storage, but these mechanisms must be explicitly

38

. "™ j

Introduction

myoked by the user and no higher-level, encryption-based protection mechon
are provided, e, there is no specific support for mechanisms to detect modiicas o
of data. Moreover, the daborate key management fucilities provided by this
software 1s designed for multi-user centralized svstems, not the single user,
decentrahized systems which are the wopic of this thests, Thus this work has ven
itde relationship o the topic of this thesis. Other rescarchers [18,27) have
suggested using eryptographic technigues to protect information stored (and
evecuted) at centradized systems, but these suggestions have not been accompanied
by detatled proposals or even thorough analyses of the security requirements. fois
Cusy Lo postidaie encry paon as a means of protectng mformation in this context but,
as this thesis iustraies, there are a number of difficult problems that must be solved

mamplementng such mechanisnis,

(n summary, the problem of designing protection mechanisms for use with
externally supphied software in decentralized computing environments has recetved
fittle attienvon, The only work that paralicls this thesis s that of a patented
nicroprocessor design which, as noted above, does not address the fnd! rgpos of
probiems described and soived in this thesis. Research m protection of inforimaticn
- centralized systems, communication security, cryptographic file security and
distributed system protection mechanisms all contribute in some fashion to the work
described in this thesis but this work studies and solves problems that have not been

addressed previousty.

1.5 Thesis Outline

Chapter 2 explores in detail the system madel introduced in this chapter. The

chapter projects values of various parameters for processors, busses and storage and

peripheral deviees that might be used in the systems of interest over the next 3-5

- r M
.

Introduction

years. This chapter also examines the concept of tamper-resistant modules in
greater depth, noting some of the problems that may arise in engineering such
modules. The simplest approach to protecting external software based on the use of
a TRM is described and evaluated. The chapter concludes with a brief discussion of
cryptography and a simple application cxample, secure network-based distribution
of external software. ‘The protection mechanisms developed in Chapters 3 and 4
employ cryptographic techniques, so this discussion is intended as background for

the reader who may be unfamiliar with fundamental cryptographic techniques.

Chapter 3 develops designs for protecting external software based on an
encrypted bus approach. It contrasts security requirements for this approach to
those usually associated with communication systems. The chapter develops
cry ptographic-based protection mechanisms 1o secure transactions on a physically
unprotected bus connection TRM-packaged devices that form a computer system.
In developing these mechanisms, special attention is paid to minimizing the impact
of protection measures on the performance and overall cost of the computer system,
System initialization procedures, crror response and recovery measures and
procedures for adding new TRMs to a system are presented. This chapter describes

ways of interfacing non-secure devices to these encrypted bus systems .

Chapter 4 develops system desighs based on an encrypted storage approach. The
security requirements in this approach differ somewhat from those in the encrypted
bus design. These differences are examined through the use cf an abstract model
that captures the cssential features of this approach independent of the system
configuration cmployed. Cryptographic-based protection mechanisms are
de' cloped to secure data held in physically unprotected storage. The protection
mechanisms employed here differ noticcably from those developed in Chapter 3.
Again, special attention is paid (o minimizing the impact of these protection

mechanisms on system performance and cost. ﬂ

40

Introduction

Chapter 5 explores the problems of developing computer systems that execute
software supplied by multiple vendors and of meeting user security requirements in
the context of systems executing external software. This chapter uses the system
designs of chapters 3 and 4 to achiceve these dual requirements. These requirements
can be met in two ways, either through the use of third-party supplicd TRMs with
trusted operating systems or through the use of separate TRMs (one per vendor)
combined into a single computer system. Both of these approaches are described

and evaluated in terms of cost, effectiveness and acceptance by users and vendors.

Chapter 6 summarizes the results of the thesis, examines the applicability and
limitations of the proposed mechanisms and suggests possible directions for further

rescarch in this area.

1.6 How to Read This Thesis

Theses can be read at a number of levels, ranging from cuisory perusal to critical,
in-depth analysis. Those who wish only an overview of the research described in
this thesis probably should read only this introductory chapter and the concluding
chapter. Such readers are already more than half-way through if they have not
cheated (by skipping material before this section). Brave souls who desire a detailed
understanding of all the protection mechanisms developed in the thesis will have to
wade through cach chapter, section and subsection. However, individuals with
some understanding of cryptography may skim the discussion of this topic presented
in section 2.3. Special provisions have been made for readers seeking a thorough
understanding of this rescarch but not wanting to examine all of the proposed
mechanisms in detail. At one or more points in Chapters 3, 4 and 5. instructions
have been included to direct the reader around detailed discussions of specific

protection mechanisms. One can gain a fairly good understanding of this rescarch

Introduction

by following these directions, even if all of the detailed discussions are avoided. As
a further aid to the reader, a list of acronyms used in this thesis is provided as an

appendix (page 248).

42

Chapter Two

The System Model, TRMs and Cryptography

This chapter begins by describing in greater detail the computer system model
introduced in section 1.3.1. Variations on the basic model are introduced and
projected characteristics of devices in these systems are extrapolated from current
device specifications. This model provides an engineering context for the design
and evaluation of the protection mechanisms explored in the thesis. Next, the
chapter explores the use of tamper-resistant modules (TRMs) to physically protect
security-relevant system components and thus protect external software, meeting the
requirements of vendors. A simple system design employing a single TRM can
mect vendor security requircments, but there are a number of limitations associated
with this simple design. To overcome these limitations, more elaborate designs
combining TRMs and cryptographic techniques are developed in Chapters 3 and 4.
This chapter concludes by introducing the reader to some cryptographic concepts

and cxamining cryptographic technigues for use in the latter chapters.

2.1 The System Model Revisited

A simple model for the computer systems of interest was introduced in Section
1.3.1. 'This model, reproduced in Figure 2-1, and variations on it arc described in
greater detail in this section. The model provides a framework in which detailed
designs of protection mechanisms are developed and evaluated and it includes only
those details that affect these mechanisms. For example, most details of bus
arbitration are ignored as they are largely irrelevant to the propesed protection

mechanisms, whereas timing characteristics of devices in the system are presented

43

e T e st v

Fhe System Model, TRMs and Cryptography

since they are necessary in evaluating the performance impact of such mechanisms.
This model attempts to embody the high level architecture of personal and small
business computers that will be constructed in the next 3-S5 years. However,
differences between this nodel and computers actually produced need not preclude
the adoption of the protection mechanisms developed in the thesis. In fact, the
protection mechanism designs that are most likely to prove feasible are largely
independent of details of processor and primary memory operation. Thus, although
the system model attempts (o capture salient features of real computers, deviations

from this model do not affect all the protection mechanisms proposed in this thesis.

CPU

P-MEM S-MEM T&A other peripherals

Figure 2-1: The Basic Mode! for the Computer Systems of Interest

Before proceeding to a discussion of variations on this basic model, some
additional comments are in order. In Figure 2-1 and other system configuration
diagrams each storage system component is depicted as a single box. ‘This is not
meant to imply that in é\'cry case there is but one of cach of these devices nor that
multiple instances of a device are packaged together. In the basic system model
there is only one processor (CPU) but there may be multiple, independently
packaged instances of the storage devices. In particular, when storage devices

containing sensitive data are TRM-packaged, additional, non-TRM-packaged

4

The System Model, TRMs and Cryptography

devices may be used to hold chient data since vendors are not trying to protect this
data from physical attack. This device replication is not required for vendor security
but may be preferred by clients since it gives them full access to their duta. (This
dual packaging strategy is not applicable to transfer storage since it is used
exclusively by vendors.) Thus, these configuration diagrams illustrate minimal

implementations.

In section 1.3.1 there was a brief discussion of how secondary storage (S-MEM)
differs from transfer and archival storage (T&A). 1t was noted that transfer and
archival storage is always demountable whereas sccondary storage may be non-
demountable. Thus these two types of storage are not necessarily distinguishable
based on the devices used to implement them, i.¢., a demountable disk might serve
as either transfer and archival or secondary storage. A sccond distinguishing feature
is that files on T&A storage arc viewed as being outside of the file system maintained
on secondary storage. The assumption here is that program files are transferred into
primary memory for execution from the file system (via swapping or demand
paging). Portions of data files are read and written by transfers between primary

memory and secondary storage, e.g., disk sectors may be the object of such transfers.

Ext.rnally supplied software distributed to a client on transfer storage media is
moved to a permanent home on sccondary storage before use. A scnsitive file on
secondary storage mav be recorded on secure archival storage media and later can

be reloaded, i.¢., copicd to the file system under its original name.

There are three possible reloading constraints associated with files maintained on

secure secondary storage: unconstrained, non-refoadable and most recent only. Some i
|
files have no constraints on reloading, 1.¢., the client is free to reload any archived !
i
copy of the file. An object code file produced by a proprictary compiler might fall

into this class since the vendor has no concern over which version of the file is

executed by the client. Other files are non-reloadable, i.e., under no circumstances

45

The System Model, TRMs and Cryptography

should these files be archived and later reloaded. Accounting files used by
proprictary software may fall into this category since if they were reloaded the client
could "turn back the clock™ on the billing function they provide. Special

precautions must be taken to ensure the reliability of these files and these

precautions may significantly increase the space occupied by the file. Vendors also
may require some files to be arck ved and reloaded together by the operating system
(1o enforce some consistency constraints) and these can be grouped into archival
units on archival storage. The same concept can be appliced to files that make up
external software packages, yielding transfer units on transfer storage. Ways in

which these groupings can be implemented securely arc examined later.,

In between these two extremes are files that may be reloaded only from the most
recent archived copy of the files. For example, a database may be periodically
checkpointed (archived) and a small transaction log may keep track of the updates
that take place between checkpoints, The database should be reloaded only from
the most recent archived copy and the small transaction log can be non-rcloadable.
These reloading constraints apply not only to individual files but also to groups of
files that must be archived and reloaded together, to ensure consistency across file
boundaries. (Such consistency also may be achieved explicitly by including some
information in each file that binds it to the other files archived at the same time.)
Even if there are no constraints with respect to timeliness associated with reloading a
file (unconstrained), it may be required that other files archived at the same time
must be reloaded along with this file. Thus even unconstrained files may have some

constraints on reloading.

2.1.1 Variations on the Basic Model

‘The computer system pictured in Figure 2-1 employs a single, general purpose

bus to interconnect all of the system devices. Figure 2-2 illustrates a variation on

46

The System Model, TRMs and Cryptography

this model, a dual-bus system in which primary memory is attached via a dedicated
memory bus whereas other devices are attached to an 170 bus and the two busses are
connected via a bus coupler at the processor. (The bus coupler provides functions
necessary to mate the two busses, e.g., buffering and inter-bus arbitration.) A dual
bus system offers several advantages over a single bus system. The memory bus,
since it is quite short and since it is specialized in function, can be made faster than a
gencral purpose or 1/0 bus, thus reducing effective access time 1o primary memory.
The 170 bus is used to interconnect devices with less stringent performance
requirements and thus can be slower than a general purpose bus. In this way more
expensive, high speed bus interfaces are employed only on the memory bus (2
interfaces) and less expensive bus interfaces are used on the 170 bus where many
more interfaces are required. This configuration also reduccs contention on both

busses, further improving performance.

CPU

P-MEM S-MEM T&A other peripherals

Figure 2-2: A Dual Bus System Model

Dual bus systems provide improved performance at the cost of a bus coupler and
two high speed bus interfaces. This performance gain entails some cost and since
high performance is not a major design parameter for the systems of interest, one

expects to see both single and dual bus systems in practice. Another way to improve

4

The System Model, TRMs and Cryptography

system performance is to add a cache memory to the processor. (System model
diagrams do not explicitly illustrate the presence of a cache at the processor.) The
major motivation for using cache memory is that it reduces the effective access time
of primary memory. As processors in the systems of interest become faster,
inclusion of cache memory will probably become appropriate. Moreover, use of
cache memory allows somewhat slower, chcaper primary memory to be employed
with only a minimal effect on effective access time. This is an important feature as
processor costs will be small relative to primary memory costs in many of these
computer systems. Finally, usc of cache memory reduces bus contention and may
eliminate the need for a very high speed bus, i.c., one capable of keeping up with

processor-gencrated references to primary memory.

Again, the performance gain achicved here is not without cost. The addition of
cache memory to a processor is a non-trivial engineering task and the cost of the
resulting system is correspondingly increased. Thus one expects to encounter both
cache-equipped and cacheless systems in practice. A cache can be added to a
processor in either a single or dual bus system, yielding four basic system
configurations: singlc bus cacheless, single bus cache-equipped, dual bus cacheless
and dual bus cache-equipped. In general, system performance improves with
successive configuration choices on this list, i.¢., a single bus, cacheless system is the
slowest and a dual bus, cachc-cquipped system the fastest. In illustrating system
configurations, if the choice between single and dual bus designs or the inclusion or
omission of a cache is irrelevant to proposed security mechanisms, the gencric
model of Figure 2-1 will be used. Otherwise, spccific bus configurations will be

shown and the inclusion or omission of a cache will be noted in the text.

(TP, <o W e o o
3

‘The System Model, TRMs and Cryptography

2.1.2 Processor and Storage System Parameters

Most dctails of processor operation are irrelevant to the model but a few
parameters are critical to the formulation and evaluation of design options. One of
the most important parameters is the processor word size, i.c., the number of bits of
data normally fetched and transformed by the processor. A word size of 32 bits is
projected for the systems of interest. This is a larger word size than most personal
computers employ at this time, but alrcady there arc single chip processors with 32-
bit registers, ¢.g., the MC68000 [22], and full 32-bit microprocessors will probably be
announced before the end of 1980. The processor should be capable of directly
addressing about 16M-32M bytes of primary memory, to take advantage of the
continuing improvements in memory technology. Bus addresses should be a little
less than 32 bits, to support byte addressing of primary memory (24 to 25 bits) and
for control of peripheral devices. The size of these addresses and the word size
suggests that one set of bus lines should be used alternately for addresses and data,
to reduce the cost of bus interfaces. This is especially important for the general

purpose and [/0 busses since a number of devices will be connected to these busses.

If the processor is equipped with a cache memory, several additional parameters
come into play: cache size, line width and update scheme.? A survey of existing 32-
bit, cache-equipped processors turns up cache sizes ranging from 8-32 Kbytes and
line width of 8-32 bytes. As noted earlier, the systems of interest are not intended
for extremely high throughput, so the projected cache size for these systems is 8
Kbytes. For most systems a line width of 8 or 16 bytes (2 or 4 words) will be
appropriate but a 32-byte line width will be required in support of some encrypted
storage protection mechanisms. Since the systems of interest gencerally support only

a single user, the hit rate for a cache of this size may be in the range of 95-98% [6).

3 A cache fine is the group of words treated as a unit for addressing and replacement purposes.
Within the cache, there are a number of cache line frames, cach capablc of holding one line,

he System Model, TRMs and Cryptography

Cache memory control logic will employ one of two schemies for updating the
contents of primary memory: write-through or write-back. In a writ-through cache,
a write to a word in the cache is propagated to primary memory immediately, so that
primary memory and the cache remain "in sync.” (In fact, the update of primary
memory normally is buffered by the cache so that the processor does not have to
wait for the primary memory aceess to complete, so there is a short time windew
when the two are not in sync.) If the target of a write 1s not in the cache, then the
update takes place only in primary memory, i.e., the cache is not affected. In a
write-back cache, writes are effected only in the cache, i.c., an attempt to modify a
word not in the cache results in a fetch of the appropriate cache line from primary
memory. Updates are propagated to primary memory only when modified cache
lines are evicted as part of the cache replacement strategy. (Note that an entire
modified cache line is copied into primary memory; there is no attempt to keep
track of which words in the line were modified.) In a write-back cache anywhere
from 20-60% of the misses result in eviction of modified lines, i.e., the evicted line is
written into primary memory. Unless otherwise stated, caches in this thesis are

assumed to be write-through.

To estimate the performance characteristics of the processor and various levels of
storage, one must adopt some rules of thumb. Recent trends in semi-conductor
technology provide several such rules for projecting the performance and cost of the
systems of interest [2]. These projections are useful in that they provide a basis for
evaluating proposed designs in terms of technological (and economic) feasibility.
For example, one rule of thumb notes that the component count per IC chip
approximately doubles cvery year and memory chip capacity quadruples cvery two
to three years. At the same time, raw speed of IC chips doubles every five years. As
production techniques are refined the cost of producing chips with constant
performance characteristics drops by about 20% per year. Using these rules of

thumb, one can extrapolate from current product specifications to project some of

the characteristics of systems that will come into existence over the next 3-5 years.

-

The System Model, TRMs and Cryptography

Based on these trends, the minimum instruction execution time for processots in
the systems of interest should range from about 100ns (10 MIPS maximum) for a
high performance multi-chip CPU (the "top of the line™ in this class of systems) to
about 600ns (1.6 MIPS maximum) for a slow, single chip processor (a “low end”
entry in this class). It is assumed that the fastest instructions are register-to-register
operations, no memory references are involved, so this time is also taken as the
minimum time between processor-generated memory references. The mean time
between processor-generated memory references is assumed to be about a factor of
3 or 4 greater than this minimum, accounting for fonger instruction execution times
and references for instruction operands. This yields processors with average speeds
ranging from 0.4 to 3.3 MIPS (assuming matched primary memory access times as
described below). For the storage components of the system, there are a number of
relevant device characteristics: access time and transfer rate, mean time between
references, storage capacity of the device, size of data aggregates transferred to and
from the device and the mean time between failure (MTBF) of the device. In
general, going from the lowest level in the storage hicrarchy (cache memory) to the
highest (T&A storage) the access time, mean time between references, capacity and

data aggregate size all increase whereas the MTBF and transfer rate decrease.

The volatility and demountability of storage devices are also relevant to the
system model. Cache and primary memory are constructed from solid state
components and are volatile whereas sccondary memory and T&A storage are non-
volatile. Only T&A storage is required to be demountable but secondary storage
may also be demountable, depending on the technology employed. *Note that even
though magnetic bubble memories may see increased application in this time frame,
such memories are not expected to be price competitive with removable magnetic
media for many applications and thus will not significantly displace such media. In
fact, the recent improvements in non~demountable disks, c.g.. Winchester

technology disk drives, make it likely that magnetic bubble memories will not

51

‘The System Model, TRMs and Cryptography

significantly displace disks for some time. Thus the predominant form of secondary
storage employcd in these systems is likely to be magnetic disks. Also, not all system
configurations will provide scparate devices for secondary and T&A storage, thus

demountable media may serve a dual role in some systems.

Now consider projected values of some these parameters for devices at various
levels in the storage hierarchy. In high performance systems employing a cache, the
effective access time will be about the same as the minimum instruction execution
time. (The memory chips used in caches are static RAMs so the cycle time and
access time are the same.) This access time includes checking to see if the requested
word is in the cache and the transport delay between the cache and processor. Thus
a processor with some instruction lookahead facilitics can maintain a continuous
stream of references to the cache for minimum time instructions. This suggests an
effective cache access/cycle time of about 100ns, which yiclds a transfer rate of 320
Mbits/s. Access time for primary memory (using 64-256 Kbit chips) should range
from about 100ns to 200ns, exclusive of bus t'r:mspon time, with cycle time about
twice access time. Bus time will add some 200ns to 300ns to this access time (for
transport), yielding an cffective primary memory access time of about 300-600ns, so
the maximum primary memory transfer rate ranges from about 106-213 Mbits/s.
(This transfer rate assumes a non-interleaved memory; cache-equipped systems will
require at least two-way interleaving for quick transfer of cache lines, increasing the

transfer rate.)

In a cache-equipped system, the effective memory access time seen by the
processor is determined by the access times of the cache and primary memory, by
bus transport time and by the hit rate. A cache-cquipped system using fast (100ns
access time) primary memory and a fast (100ns transport time) bus can achicve an
effective average access time of 104-110ns, based on a 95-98% hit rate. For a cache-

equipped system using slower primary memory (200ns access time) and a slower bus

‘The System Model, TRMs and Cry plugi‘uph)*

(200ns wansport tine), the effective average access time is 110-125ns, based ¢n this
hit rate mngc.4 This ilustrates the enormous improvements that can be obtiined by
inclusion of a cache memory. Even if performance is not a critical concern,
cconomics may dictate use of a cache since it allows use of slower, cheaper memory
chips for primary memory. At this time, the location of the "break even™ point,
based on the cost of equipping a processor with a cache versus the cost of memory

chips and the anticipated size of primary memory, is not obvious.

For secondary storage the access times and transfer rates vary considerably
depending on the technology employed. For example, magnetic bubble memories
may provide average access times of 10-15ms and transfer rates of 0.1-1.5 Mbits/s
whereas fixed disks may exhibit average access times of about 70ms and transfer
rates of 10-15 Mbits/s. Bubble memories, using 4-16 Mbit chips, may be configured
as small capacity storage devices (4-16 Mbytes) whereas hard disks may contain up
to 100 Mbytes. Devices used for T&A storage tend to be relatively slow, at the low
end of the range for secondary storage devices. For example, floppy disks may
exhibit access times on the order of 100-400ms and transfer rates of 0.5-1.0 Mbits/s.
Capacity for floppies may grow to 5-10 Mbytes using double sided, double density
recording technology. For all of these secondary and T&A storage devices the
(usable) record size is cxpected to be about 512 bytes. These characteristics of the

computer systems of interest are coliected in Table 2-1.

4'I'his cffective average access time calculation assumes that on a cache miss the first word fetched
is the one which caused the miss and that subscquent references to words in the fetched line occur at
cache speed. This second assumption may not hold for long cache lines (54 words) or if a slow bus
and slow primary memory are used.

53

e B e

The Sysiem Model, TRMs and Cryptography

System Characteristics

- Processor and Bus

*word length: 32 bits

*minimum instruction time: 100-600ns (1.6-10 MIPS)
*average instruction time: 300-1800ns (.4-3.3 MIPS)
*bus cycle time: 100-200ns
*multiplexed data/addrcss bus lines: 32
- Cache (optional)
*access/cycle time: 100ns
*line width: 8, 16 or 32 bytes
*capacity: 8 or 16 Kbytes
- Primary Memory
*access time: 100-200ns
*cycle time: 200-400ns
*capacity: 64K-16M words
- Secondary and T&A Storage

*access time: 10-400ms
*transfer rate: .1-10 Mbits/s
*capacity: 5-300 Mbytes
*record size: 512 bytes

Table 2-1: Characteristics of the Computer Systems of Interest

54

r—

The System Model, TR Ms and Cryptography

2.1.3 Other Peripherals

In Figure 2-1 peripherals other than storage devices are lumped together at the
end of the bus under the heading “other peripherals.” This heading includes
terminals, bulk 170 devices and communication facilities, e.g., network interfaces.
These devices are not described in detail since their operation is not critical to the
security of external software. For example, external software that interacts with a
user via a terminal must be prepared to accept any input from the user and thus no
tampering with the terminal should affect the secure operation of the software. The
same argument holds for hardcopy output devices and even for network interfaces.
(If external software requires secure communication facilities, these facilitics will be
provided within the TRM containing the processor.) In designing mechanisms to
protect external software, provisions must be made to accommodate [/0 devices,
i.e., these devices must still function properly in conjunction with protection
mechanisms.

Only two 1/0 devices exhibit high enough transfer rates to warrant further
discussion: network interfaces and bit-map displays. For most personal and small
business computers the network interface will be telephone based and thus is
restricted to relatively low bandwidth, e.g., less that 10 Kbits/s. However, in
distributed systems, high speed local area networks will probably be employed and
the bandwidth could be in the neighborhood of 10-20 Mbits/s. This transfer rate is
equal or greater than that of many secondary storage devices and thus constitutes a
significant contribution to bus utilization. Many systems may be equipped with bit-
map displays in the future. These displays associate with every pixel on the screen
one bit in a display memory, typically on the order of 128 Kbytes. (Color bit-map
displays associate several bits with cach pixel.) The data transfers required to
manipulate the display may be limited primarily by memory access time, so these
displays are capable of very high transfer rates and they can become dominant users

of a general purpose or 170 bus.

35

‘The System Model, TRMs and Cryptography

2.1.4 Basic Bus Characteristics

The busses (general purpose, 1/0 and memory) employed in the model are
abstracted from conventional designs such as the DEC UNIBUS and the 1EEE S-
100 bus. Only those characteristics of bus operation that directly affect the design of
protection mechanisms are included in the model. The bus consists of a collection
of bidirectional lines for transmitting addresses, data and control information, as
detailed in Table 2-2. (Additional lines are provided for timing, arbitration, power,
etc. but are not included the model.) The general purpose and 170 bus are
asynchronous or pseudo-synchronous whereas the memory bus is assumed to be
synchronous. A bus cycle is the time interval rcquired to perform a bus operation.
There are four bus operations: PRESENT-ADDRESS, PRESENT-DATA,
ACKNOWLEDGE and ERROR. The first is used to place an address on the bus,
the second does the same for data (or an interrupt vector) and the third

acknowledges receipt of data. The last operation, ERROR, is described below.

Bus cycles are well defined for synchronous and pseudo-synchronous busses; for
asynchronous busses the minimum time required for a bus operation as described
above will be referred to as the bus cycle time. For the systems of interest the bus
cycle time will range from about 100ns for a memory bus to about 200ns for generai
purposc or 170 busses. An arbitration mechanism, which may proceed in parallel
with data transfers, is used to select the next device to use the bus, i.c., the bus
master. (Although arbitration is an important aspect of bus design, all of the
commonly used bus arbitration schemes are essentially equivalent from the
standpoint of security and thus no specific arbitration scheme is included in the
model.) Once granted the bus, the bus master uses two or more operations to
complete a bus transaction, e.g., a data transfer, with another device, the slave. (In
asynchronous and pscudo-synchronous busses a handshaking protocol usually is

cmployed to allow both slave and master to control the duration of the transaction.)

56

| e e e s aworr

The System Modcl, TRMs and Cryptography

BUS LINE DESCRIPTION
A/DO-31 used to transmit addresses and data
PARITYO0-3 used to parity check fines A/7D0-31

ADDR asserted when an address is on lines A/D0-31

DATA asserted when data is on lines A/D0-31

INT asserted when interrupt vector is on fines A/D0-31
READ asserted during read transactions

WRITE asserted during write transactions

EXT asserted during exrended transactions

ACK asserted by a slave to acknowledge a write or interrupt
ERROR asserted by a slave to indicate a bus operation error
RESET asserted to reset the device selected by lines A/DO-31

Table 2-2: Bus Lincs for the System Models

The ERROR operation noted carlier is issucd by a slave if a transaction cannot be
successfully completed, cven though the master uses a timeout to detect the failure

of a slave to respond.

57

The System Model, TRMs and Cryptography

Associated with cach device on the bus are one or more addressable cells from or
to which data is rcad oi written (or both). A device examines addresses placed on
the bus to determine i one of its cells is the target of an operation. In the case of
primary memory these addresses corespond to storage cells whereas for other
devices they represent control and status registers. The processor writes into a
control register to initiate an operation and reads from a status register to determine
the outcome of the operation. For example, the processor initiates a direct memory
access (DMA) transfer of data from a disk to primary memory by writing the (disk)
source address, the (primary memory) target address and the number of words to
transfer into appropriate disk control registers. The disk then transfers data to
primary memory, one word at a time, indicating completion of the transfer by
setting an appropriate value in its status register and by gencerating an interrupt.
Devices that transfer very small quantities of data, e¢.g., character-at-a-time 1/0
devices, often use device registers to hold the data rather than employing the DMA
technique described above. In such cases the device generates an interrupt and the

processor transfers data between primary memory and the device register.

In systems employing a dedicated memory bus, this bus is assumed to be quite
similar to the general purpose and 170 busses described above. There will be no
arbitration mechanism because there is only one bus master, the bus coupler
(processor), and there is no need for interrupts. The memory bus will be
synchronous with transfers taking a known period of time, since the memory
provides a uniform access time. Thus a memory bus is somewhat simplier than a
general purpose 170 bus. The functions provided by a bus coupler used to interface
these two busses will vary depending on the system design. For example, the
coupler may provide some buffering for speed matching, to account for differences
in the number of bus cycles required for operations on the two busses and to
manage arbitration across the two busses. On a store into primary memory by a
device on the [/0 bus, the bus coupler can generate an ACKNOWLEDGE

58

‘The System Model, TRMs and Cryptography

immediately and carry out the transaction on the memory bus asynchronously. On
primary memory fetches initiated by devices on the 170 bus, the bus coupler can
prefetch data in anticipation of subsequent requests from these devices. In this
fashion the 170 and memory busses can operate largely independently and most
transactions on the general purpose bus will not suffer long delays in accessing

primary memory.

2.1.5 Graphic Conventions for Bus Transactions

Two graphic techniques are employed in this thesis to describe bus transactions,
especially the sccure forms of these transactions developed in later chapters. The
first, an event graph, shows the flow of data among the processing steps in the
transaction and provides symbolic timing information. Event graphs indicate points
in a transaction where there is potential for parallelism without making any
assumptions about the performance or configuration of devices. The second, a
timing diagram, shows the utilization of various devices during a transaction,
illustrating the paraliclism achieved by using a specified number of devices under
stated timing assumptions. Timing diagrams arc useful for determining the
transaction time and cycle time of transactions for various cquipment

configurations.

In event graphs, processing steps are represented as labelled circles. The labels
consist of a symbol to indicate the type of step and a number to distinguish among
multiple instances of the same step type. Narrative descriptions of transactions refer
to the steps using these labels. Table 2-3 lists the symbols used to label processing
steps. (Some of these symbols refer to operations that are described later in the
thesis; they can be ignored for the moment.) The flow of data (and time) is from
feft to right and is indicated by arcs joining process-step circles. The inputs and

outputs of a transaction, as seen by the bus master, are indicated by bold dots and

59

!
The Sysiem Modcl, TRMs and Cryptography
]
SYMBOL PROCESSING S’!‘El’ DESCRIPTION
C | encryption/decryption of a 64-bit data block
T transmission of <32 bits on the bus
A access to read or write a memory cell
E calculation of a 64-bit cryptographic error detection code
P processor interrupt handling
X XOR (modulo 2 sum) of two <32-bit quantities

= comparison of two <32-bit bit strings

Table 2-3: Symbols Used in Event Graphs and Timing Diagrams

are accompanied by explanatory labels. The steps that comprise a bus transaction
occur at three sites in the system, the current bus master, the bus and the addressed
slave. To illustrate the paraliclism inherent in this distributed environment, process
steps are grouped along three horizontal axes corresponding to the master, bus and

slave.

In timing diagrams each independent device instance, ¢.g., a cryptographic device
or bus lines, is represented by a separate, labelled, fine horizontal line. These

devices are grouped (vertically) corresponding to the cvent graph, i.e., bus master

devices are at the top, followed by the bus and by slave devices. Time is divided

The System Model, TRMs and Cryptography

into bus-cycle duration quanta, indicated by fine vertical lines, and these lines are
numbcered at the bottom of the diagram. The actual duration of a bus cycle is not
indicated since only relative times are needed to perform the required caleulations.
Cycles during which a device is busy arc indicated by a bold horizontal line, labelled
as in the corresponding event graph, Some events, e.g., bit string comparisons or
modulo 2 addition, arc not noted since they are quite fast and thus are cffectively
absorbed by adjacent event times. Figure 2-3 illustrates the conventions used in

event graphs and timing diagrams as it describes two simple bus transactions.

Minimum transaction time (assuming maximal parallehsm) is determined by the
longest path in an event graph, i.e., the sum of the process-step times along that
path. This time is represented as an expression in which lower case versions of
process-step labels are used to subscript a time symbol (7). Thus the time to
transmit 32 bits on the bus is T’ and the time for an encryption/decryption
operation is Tl‘. Again, only major operations (those which appear in timing
diagrams) arce included in timing cxpressior{s. Some slight confusion arises in
dealing with memory accesses in cvent graphs, timing diagrams and timing
expressions. In timing diagrams the symbol A represents the activity of accessing
memory and its duration is the cycle time of the memory uaccess, but in timing
cxpressions Ta represents the access time of memory. In reading a memory cell, the
value is avaifable in time 'I‘a after the address is received cven though memory is
busy (unavailable) for the full cycle time. On writing a memory cell, the cycle time
may begin when the address arrives, even though the data may not yet be available.

The event graphs use the symbol 4 for both read and write accesses.

2.1.6 Standard Bus Transactions

Figures 2-3 and 2-4 provide the event graphs and timing diagrams for the three

standard transactions: read, write and interrupt. (Thesc transactions are referred to

61

Ihe System Model, TRMs and Cryptography

as standard 1o differentiate them from the secure transactions developed later in the
thesis.) The event graphs and timing diagrams for these transactions are fairly
simple but they illustrate the basic features of both methods of graphically
portraying transactions, In the timing diagrams in these figures the assumption is
madc that memory access time is equal 10 bus cycle time, 1.e., fast memory 1s paired
with a fast bus and slow memory with a slow bus. Although other combinations are
possible, this convention is adopted throughout this thesis, simplifying timing
calculations. However, using the event graphs and narrative descriptions provided
throughout the thesis, the interested reader can construct tming diagrams for

transactions under other (less convenient) relative performance characteristics,

A standard read begins when the bus master asserts the address of the location to
be read using a PRESENT-ADDRESS (T1). The slave accesses the indicated
location (A) and responds with the requested data using a PRESENT-DATA (12).
A write begins when the bus master asserts the address of the location to be
modified, using a PRESENT-ADDRESS (T1), then the data is transmitted using a
PRESENT-DATA (12) and the slave responds immediately with an
ACKNOWLEDGE (T3). An interrupt is signalled by transmitting the interrupt
vector using a PRESENT-DATA (T1) and the processor responds with an
ACKNOWLEDGE (T2). Processing of the interrupt (P) begins as soons as the
vector arrives. The transaction time for a read is ZT’ + T, for a write it is 37" and
for an interrupt it is 27". The derivation of these timing c:prcssions from the event
graphs is straightforward and is verified by the corresponding timing diagrams.
Under the relative timing assumptions noted above, read and write transactions both
require 3 bus cycles and an interrupt requires 2 cycles. Since only one data word is
transmitted cvery three bus cycles, the effective transfer rate of the bus is one third
of its maximum potential. For busses with cycle times over the range of 100-200ns,

the maximum attainable transfer rate is about 53-106 Mbits/s for these transactions.

‘The System Modcl, TRMs and Cryptography

Standard Read A D
D A
D T
R A
address data
Master Master 4—
: T1 T2
TR OO -
A
Slave 0 Slave
0123
Standard Write A D
D A A
DT C
R A K
address data ack
Master Master
Bus QOO Bus
Slave o Slave

0123

Figure 2-3: Event Graphs and Timing Diagrams for Standard read and
write Transactions
For cache-equipped systems there are one or two additional transactions. Both
write-through and write-back caches require extended read transactions but only
write-back cachces require extended write transactions. These transactions transfer

an entire cache line (2, 4 or 8 words) between primary memory and the cache in one

63

The System Model, TRMs and Cryptography

Standard Interrupt t
N A
T Cc
interrupt v K
vector ack
Master Master L——l———
TV (T2
Bus ° T2 Bus
p
Slave e Slave
0123

Figure 2-4: Event Graph and Timing Diagram for a Standard interrupt Transaction

transaction. Figure 2-5 provides the event graphs and timing diagrams for both
transactions using two-word cache lines and two-way memory interleaving. An
extended read begins by asserting the address of the word which caused the cache
miss, using a PRESENT-ADDRESS (T1). This word is fetched first from primary
memory (Al) and transmitted using a PRESENT-DATA (12). The remaining
words in the containing cache line are fetched (A2) and transmitted (T3) without
issuing further PRESENT-ADDRESS operations. An extended write begins with a
PRESENT-ADDRESS (T1) followed by PRESENT-DATA (T3,T4) operations
confirmed by an ACKNOWLEDGE (T5). Two-word cache lines yield transaction
times of 2T + 2T for an extended read and 47" for an extended write. Under the
relative tim;ng assSmplions noted above, both t:‘nnsactions require 4 bus cycles to

transfer two words, a bus transfer rate of 80-160 Mbits/s.

The higher bus transfer rate achieved in extended transactions comes about by
climinating explicit PRESENT-ADDRESS opcrations associated with subsequent
words in the cache line. As the cache line width grows this yiclds even greater

transfer rates. For example, a 4-word cache line can be transferred using 7 bus

64

gt 44— A TR A T 5 &0 s
Sh it e o L .

é -

The System Model, TRMs and Cryptography

Extended Standard Read A 0D
D A A
D T 7T
R A A
address data data l
Master Master ‘

T1 T2 113
Bus B8
OB ONO us -
P-Mem Q @ P-Memi

A2
P-Mem?2
012314
Extended Standard Write A DD

D A A A

DT T C
: R A A K
i address data data ack
i Master Master M
] T1 (T2 |13 (T4

TR OROCIOEEOIT

At

e _
o Mem ° @ P-Mem1

A2

01234

Figure 2-5: Event Graphs and Timing Diagrams for
Extended Standard Transactions

[he System Model, TRMs and Cryptography

cycles, a bus transfer rate of 91-183 Mbits/s. This approach to implementing
extended transactions requires increased sophistication on the part of the memory
controler, to generate the appropriate addresses to fetch or store each word in the
cache line after the first. It is also necessary to interleave memory so that
subsequent accesses can proceed without waiting for a memory access cycle to
complete. Since cycle time 1s assumed to be about twice access time, two-way
interleaving of memory is adequate for all cache line widths under this scheme. An
alternative approach to implementing cache/memory transfers uses memory
interleaving and additional bus lines to fetch or store multi-word units. However,
the scheme adopted here should provide adequate bandwidth for the processors in

the systems of interest without incurring the expense of extra bus lines.

2.1.7 Bus Utilization

Armed with the performance characteristics of various devices on the bus, one
can make some rough cstimates of bus utilization in the systems of interest. Precise
bus utilization figures are application and equipment dependent, but even rough
estimates are useful in cvaluating the performance impact of the protection
mechanisms proposed in subsequent chapters. (These mechanisms often increase
bus utilization by "protected” devices.) In genceral, bus utilization in single bus,
cacheless systems will be very high but can be moderated by the addition of a cache.
In dual bus systems, 170 bus utilization is likely to be low but the memory bus will
be very busy unless a cache is employed. In support of these statements consider
the following estimates. A scecondary storage device may demand up to 10-30% of
the bus cycles during a transfer operation, depending on the bus speed and device
transfer rate. T&A storage devices contribute somewhat less to bus demand and are
used less frequently, but they can generate transient loads of 5-10%. The bus

utilization of a network interface depends on nectwork bandwidth but 10-35%

66

e A s

The System Model, TRMs and Cryptography

transient utilization is possible. Manipulation of images on a bit-map display can
absorb essentially all of the bus cycles for short periods. Other 170 devices place

only minor demands on the bus, e.g., <10% aggregate.

Bus utilization by the processor varies greatly between cache-equipped and
cacheless systems. In a cacheless system, the assumption is made that the bus cycle
time and primary memory access time are chosen to yield an effective memory
access time equal to the minimum instruction execution time, producing a well
balanced system. For example, a 100ns cycle time bus paired with a 100ns access
time memory yields a system capable of supporting a processor with a minimum
instruction time of 300ns (3.3 MIPS maximum). If the average time between
processor-generated memory references is about 3-4 times the minimum instruction
time, the processor will require about 25-33% of the bus cycles on the average with
peak utilization near 100%. Using a cache with a 100ns access time, the same
processor requires an average of 5%-15% of the cycles using a fast bus and memory
and 10%-30% for a slow bus and memory. Of course cache misses generate transient

bus utilization of 100%.

2 2 Tamper-Resistant Mndules

As noted in Chapter 1, the vendors of external software have two major security
requirements: preventing disclosure or redistribution and detecting modification of
external software. Using the system modecl described in section 2.1, a number of
specific attacks that violate thesc requirements arc readily identified. The
assumption is that the system components identified in t-igure 2-1 are unprotected
and that an attacker can examine or modify data in these unprotected components
using appropriate cquipment. For example, demountable media used for sccondary

or T&A storage can be removed from the system and the data contained thercin can

67

Phe System Model, TRMs and Cryptography

be read or modified. A more sophisticated attacker might attach probes to the bus
to passively or actively wiretap bus transactions, e.g.. to record transmitted data or to

generate spurious transactions that modify data in the system,

2.2.1 TRM Characteristics

‘These simple examples illustrate the need to provide some form of protection
against physical tampering for those portions of the system which arc critical to the
secure operation of external software. At a minimum, the processor will be
contained in a tamper-resistant module (TRM) since the software and databases
otherwise cannot be protected during execution. A TRM has the characteristic that
it prevents release or modification of the data contained therein as long as the
module is intact. 1fa TRM is (physically) breached it is assumed that any sensitive
information inside the module is destroyed (erased). If external software (including
any databases critical to secure operation) is stored, executed and transferred wholly
within a TRM, the security requirements of vendors can be met since disclosure and

undetected modification of the software can be prevented.

The difficulty associated with engineering a TRM that performs as noted above
depends on several factors. The guiding principle is that the cost of subverting the
TRM should be greater than the expected gain resulting from the subversion. Thus
TRM design is influenced by the value of the software being protected. The cost of
subverting a TRM includes not only the price of acquiring the module and the
effort involved in breaching it, but also any penalties resulting from detection of
tampering. For exampic, if a client were to rent a TRM from a vendor and the
vendor were to inspect the module and discover evidence of tampcering, the vendor
might refuse to furnish any other software to the client and might institute legal
action against the client. Thus *he cost of subverting a TRM must reflect the

likelihood of detection and consequent institution of punitive measures by a vendor. q

68

The System Model, TRMs and Cryptography

This suggests that engineering a TRM miay be much easier if the TRM is not owned
by the client/attacker but rather is rented from a vendor who retains the right to
inspect the module and who can institute appropriate (Iegal) measures if evidence of

tampering is discovered.

Although the details of engineering TRMs are beyond the scope of this thesis,
onc can make some general observations about characteristics of TRM packaging.
First, it should be noted that some commercial cryptographic devices available
today incorporate fundamental TRM design criteria. For example, these devices
may be housed in scamless metal cases with access controlled by a pair of high
security locks. These devices are designed to erase the cryptographic keys contained
within whenever the device is opened, to prevent the leakage of information via
electromagnetic radiation, to withstand external electromagnetic interference, etc.
Although these devices are not designed to withstand a prolonged attack by a
sophisticated tamperer, they do suggest that TRMs can be engineered for the level

of security appropriate for commercial applications.

One of the most important characteristics of a TRM is its ability to destroy
sensitive data contained within should it detect any evidence of tampering. This
destruction of data must be carried out quickly to prevent a would-be tamperer
from accessing the information after breaching the TRM. Rapid crasure of a large
quantity of non-volatile memory, e.g., in secondary or T&A storage devices, may
prove difficult or impossible depending on the storage technology employed. Thus
magnetic bubble memories might provide an attractive form of secondary storage
for TRM packaging while media such as disks may be less well suited to this

application.

Another aspect of TRMs that must be noted is their impact on flexibility of
system configuration. In configuring a computer system composed of one or more

TRMs, the user will probably be restricted in the sclection of components. In part

69

The System Model, TRMs and Cryptography

this restriction arises because not all devices or combinations of devices are
amenable to TRM packaging. Morcover, all devices in a TRM (or a collection of
co-operating TRMs) must be packaged by the vendor of the system since all of these
devices must perforim correctly to maintain the security of the external software.
This requirement may result in some combinations of devices being unavailable as a
TRM-packaged system. The ability to expand a system may be hampered by lack of
space within a TRM to incorporate more components. Maintenance of TRM-
packaged devices is hampered since only the TRM vendor is in a position to provide

service while maintaining system integrity.

An important consequence of TRM packaging is the cost incurred. Packaging
one o more devices as a TRM is more expensive than standard (non-secure)
packaging. Although the differential in cost between standard and TRM packaging
varies based on the perccived threat environment, experience in packaging
commercial cryptographic devices indicates that this cost can be quite substantial.
For example, the difference in price between one conventionally packaged (rack
mount) link encryption device and the same device packaged for use in unsecure
arcas (desk top box) is approximately $900, roughly 45% of the total price of the
latter unit. It appears that the majority of this cost arises not from additional
clectronic components but from mechanical engineering considerations. Over and
above some base, the cost of building a TRM probably increases with the size of the
TRM, for a fixed level of sccurity. Thus very large TRMs may be impractical
because the cost of packaging would be great and very small TRMs may be
infeasible because the cost of packaging would be significantly greater than the cost
of the protected components. Only over some middle range is TRM packaging

likely to be practical.

It may be cheaper to build a TRM that is permanently sealed, as opposed to one

that includes provisions for controlled access, and the resulting device may be more

70

- R

The System Model, TRMs and Cryptography

secure. The assumption here is that provisions for controlled entry into the module
introduce weak points that must be buttressed by sophisticated and costly security
mechanisms, 1t may also be casier to detect tampering in permanently scaled
modules. TRMs sealed at the time of manufacture would include no provision for
controlled access for maintenance, thus eliminating the need for trusted field service
personnel. If a component within a sealed 'TRM fails, the entire TRM would be
replaced and the failed TRM would require "factory” servicing and re-packaging

(the contents would be crased during servicing). This approach to TRM packaging

would probably work well with devices that are highly reliable, c.g., solid state
devices, but not with electromechanical devices that require periodic servicing.
Sealing a TRM eliminates the option for field upgrades or expansion. Finally, the
number of components that can be packaged in a scaled TRM is limited by the fact

that the failure of any component may require replacement of the entire TRM.

2.2.2 A Monolithic TRM Approach

As a first approximation to protecting external software, one could imagine
enclosing all of the devices that are critical to the secure operation of the external
software in a monolithic TRM, as illustrated in Figure 2-6. (The specific system
configuration used within the TRM is not important here since all of the security
relevant components are entirely within the TRM.) The security requirements of a
vendor can be met by this sort of system since the processor, all storage required by
external software and the bus conncecting these devices are all contained within the
TRM. Note that not all of the system components are enclosed in the TRM.
Terminals and other peripheral devices that do not effect the sccure operation of
external software can be attached to the bus outside of the TRM. Even storage
devices for data not essential to the secure operation of external software could be

attached to this bus extension, e.g., secondary storage exclusively for clicnt data

7 ,

The System Modcel, TRMs and Cryptography

could be provided outside the TRM. In order to attach other devices to the bus
without violating the security provided by the TRM, the bus extension requires a

special secure bus coupler (SBC).

s
CPU &

P-MEM S-MEM T&A other peripherals

Figure 2-6: Using a Single TRM to Protect a System

The SBC acts as a filter to prevent unauthorized disclosure or modification of
data within the TRM. To this end, the SBC ensures that bus traffic among devices
within the TRM is not repeated onto the bus extension (to prevent disclosure) and it
controls access to primary memory by DMA devices outside the TRM (to prevent
disclosure and modification). These tasks are made casier by partitioning the bus
address space so that a single address line indicates whether an addressed device is
inside or outside the TRM. It then becomes trivial for the SBC to avoid repeating
intra-TRM bus traffic onto the bus extension by inspection of this address line. To
control access by DMA devices to primary memory, the processor must inform the
SBC of the locations that should be accessible to DMA devices outside the TRM,
along with the mode of access allowed, i.e., read or write. The SBC can be equipped

with a small number of registers to establish the bounds and access modes for these

T2

The System Model, TRMs and Cryptography

locations. These registers are managed by the processor as part of controlling
"unsecure” DMA devices’ and are scanned on transactions initiated outside the
TRM.

This approach to securing external software has several advantages. Little in the
way of special hardware is required, only the SBC is unique to the design, the
remaining devices can be "off the shelf.” The SBC appears relatively casy to
construct and should be capable of operation at bus speeds, given the existence of
analogous devices such the the UNIBUS adaptor employed on the VAX 117780
[10]. The only impact on software is the requirement 1o co-ordinate management of
the SBC with control of DMA devices on the bus extension, a function easily
assumed by the operating system as part of device management. The design also
provides some flexibility in system configuration. For example, secondary storage
for client files might be provided on devices attached to the bus extension whereas
sccondary storage for external software is provided by devices within the TRM.

Despite the advantages noted above, this design also has a number of drawbacks.

Perhaps the most obvious problem with this design is that it does not provide for
demountable secure storage. Thus no secure T&A storage can be provided, as noted
by its absence from the TRM in Figure 2-6, and secondary storage contained in the
TRM cannot employ demountable media. The lack of secure transfer storage could
be a major problem if the only alternative were the use of crasable PROM
(FPROM) or factory-recorded secondary storage within the TRM. Note that ROM
is not acceptable for recording external software because of the neced to be able to

erase the sensitive information contained in the TRM in case of tampering.

SF()r the SBC to be completely transparent, it would have to be aware of the addresses and
semantics of the control registers for all of the devices on the bus extension. This would significantly
complicate the SBC and would kimit the choices for devices on the bus extension to thase with which
the SBC was familiar. For these reasons a transparent SBC design was rejected.

The System Model, TRMs and Cryptography

Similarly, only readily erased devices such as bubble memories are suitable for
inclusion as pre-recorded sccondary storage. Factory recording of external software
IS not very appealing as it docs not support distribution of new releases, either for

bug fixes or new products.

However, sccure distribution of external subsystems can be provided using
communication facilitics and employing cryptographic techniques as described in
the next section. Using such techniques, the vendor can securely transmit copies of
or updates to external software to appropriately equipped, TRM-packaged
computer systems. Thus the lack of secure transfer storage can be overcome, at the
cost of requiring some communication facilities and cryptographic capabilities
within the TRM. Whether the inability to provide demountable secure storage for
non-transfer purposes is a serious deficiency depends on the applications involved.
For example, an external subsystcm that managed client databases using data
structures and access techniques that were viewed as proprietary might require
secure demountable media for secondary or archival storage. The inability to
provide secure demountable media for secondary or archival storage is a serious

limitation in some applications.

Another difficulty with this design is that it may encounter the erasure problem
alluded to earlier, because of the presence of secondary storage within the TRM.
Again, the seriousness of this problem will depend on the volume of non-volatile
memory contained in the TRM and the technology used to implement it. Although
this design exhibits some flexibility in allowing a user to configure a system with
non-security relevant devices outside the TRM, in other ways the design allows little
flexibility. As noted carlier, the users may be quite limited in their choice of
configurations for devices within a TRM, and in this design most of the system is
within the TRM. Since secure secondary storage is available only within the TRM,

some lypes of storage devices may be precluded because of size constraints or

74

1

The System Model, TRMs and Cryptography

because of the need for periodic adjustment. The number of devices contained in
the TRM probably rules out use of the scaled TRM packaging technique described
carlier and for some systems the size of the TRM required would pose a significant

expense.

The impact of these characteristics on system design are illustrated in the
following examples. One sort of system that might be amenable to the monohithic
TRM design is a very simple personal computer designed exclusively for running a
language system such as BASIC or APL. The TRM could contain the language
system in EPROM or bubble memory and an amount of primary memory suitable
for simple applications could be provided. Secondary memory within the TRM
might not be required, making a small, sealed TRM a real possibility. User
programs and data could be kept in a secondary storage device attached to the bus
extension, along with a terminal and other input/output devices. If the only
external software to be protected were the language facilitics, and if these facilities
did not require distribution of new releases to fix bugs or to add enhancements, this
design might prove adequate. To accommodate a more flexible update strategy, a
cryptographic device, a facility for re-writing the EPROM or bubble memory and

some communication capability could be included to support remote updating.

One can imagine a number of variations on this simple scenario that highlight the
deficiencies of the monolithic TRM design. For example, if the vendor of the
personal computer wanted to sell proprietary application software (o his clients,
secure secondary storage within the TRM would be required and the problems of
providing such storage within the design have been pointed out above. These
problems also arise il the vendor requires the object code produced by the language
system to be protected from disclosure, in order to hide the code generation
techniques employed. Similar problems arise in the context of nodes in a

distributed system. For example, a sccure databasc residing at a node would have to

75

The System Model, TRMs and Cryptography

be contained in sccondary storage within the TRM and here the lack of
demountable storage and the problems of large quantities of non-volatile memory
within a TRM essentially preclude use of this design. Thus this design is inadequate

for many classcs of applications.

2.3 Cryptographic Terminology, Concepts and Techniques

Cryptographic technigues are used in four distinct contexts in this thesis.

Network-based distribution of external software requires secure communication
between a vendor and his TRMs. This method of software distribution is critical to
the monolithic TRM approach, since that approach does not support sccure T&A
storage, and it may be the preferred distribution method for the other design
approaches as well. This section presents the basic communication sccurity
techniques necessary for secure, network-based distribution of external sofiware.
The encrypted bus approach examined in Chapter 3 relics on secure communication
among TRMs connected via a physically unprotected bus. That chapter presents
modified communication security techniques for this highly specialized
communication environment (the bus). The encrypted storage approach of Chapter
4 develops special cryptographic techniques to protect data stored outside a TRM.
Finally, in Chapter 5. cryptographic techniques and protocols are used to distribute
external software to TRMs provided by third-party suppliers. This chapter is not a
general tutorial on cryptography; it merely attempts to provide some background
necessary to understand the cryptographic technigues c¢mployed in subsequent

chapters.

76

The System Model, TRMs and Cryptography

2.3.1 Terminology and Basic Concepts

A cryptographic algorithm or cipher is an algonithmic transformation performed
on data on a symbol-by-symbol basis. In enciphering or encrypting data, the

plaintext input is transformed into unintelligible ciphertext output. The inverse of

this operation is referred to as decryption or deciphering and it transforms ciphertext
into the plaintext from which it was derived [32]. These transformations are carried
out under the control of a key. In conventional ciphers (CCs) such as the NBS Data
Encryption Standard (DES) {23], the same key is used for enciphering and
deciphering a collection of data. On the other hand, public-key ciphers (PKCs) such
as the RSA alporithm [26] use different, but malhématical[y rclated, keys for

encryption and decryption. These terms are illustrated in Figure 2-7.

key key
¥ 3
plaintext ciphertext plaintext
- CC » CC
ENCRYPTION DECRYPTION
key key
e d
¥
plaintext ciphertext plaintext
o PKC o PKC

Figure 2-7: Conventional and Public-Key Cipher Configurations

The System Modcl, TRMs and Cryptography

For both convenutonal and public-key ciphers the assumiption is made that the
algorithm is known not only to the users of the cipher but also to any attackers. The

6 accorded data transformed by these

seereey, authenticity and integrity guarantees
ciphers derive from their mathematical structure and from the secrecy of keys used
to paramcterize the ciphers. In conventional ciphers, an attacker cannot decipher
ciphertext nor can he generate ciphertext that will decipher into predictable
plaintext without knowledge of the key used to generate the ciphertext. Thus, in
these ciphers, the secrecy of the key provides concealment and the basis for
determining the authenticity and integrity of ciphertext. In public-key ciphers, the
key used to encipher data (keyc) nced not be kept secret in order to effect
concealment integrity checking. This is because a different key (kcyd), related to the
encryption key in a complex fashion, is used for decryption. Because of the
mathematical structure of public-key ciphers, knowledge of |<eye does not allow a

cryptanalyst to determine keyd.

This property of public-key ciphers decouples secrecy from authenticity and
integrity. Data transformed under PKC key (kcye) carrics no guarantee of
authenticity since this key is usually publicly available and thus anyone can encipher
data using it. Moreover, only the holder of the matching decryption key (kcyd) can
decipher data encrypted under kcye, so this scheme provides secrecy. Conversely,
data transformed under key 4 can be deciphered by everyone, since keye is public,
but such data can be verified as authentic and its integrity can be checked because
only the holder of key‘l can gencrate ciphertext that is predictably decipherable
under keye. (Despite designations as enciphering and deciphering keys, both PKC
keys transform plaintext to ciphertext and invert the transformation performed by

the complementary key.) Thus transformation under a public key provides secrecy

6ln this context, data is considered authentic if it was enciphered by an authorized party and its
integrity has not been violated if the ciphertext has not be modified.

78

The System Model, TRMs and Cryptography

whereas transformation under a secret PKC key provides a basis for authenticity

and integrity checking.

In communication contexts, a PKC key pair is associated with each user. Secret,
authentic, integrity-checked communication between two users can be achieved by
transforming each message twice at the transmitter and at the receiver, as illustrated

in Figure 2-8. The transmitter first transforms the message under his secret key (T-

kcyd), for authenticity, and then under the public key of the intended receiver (R-
keye), for sccrecy. (Both transformations contribute to the integrity guarantee.)
Upon receipt of the message, the receiver transforms the message under his secret
key (R-keyd), then under the public key of the transmitter (T-keye), to reveal the
original plaintext. Of course, the secrecy, authenticity and integrity guarantees
provided by these transformations are valid only if both transmitter and receiver are

correctly informed as to each other’s public keys.

TRANSMITTER RECEIVER
T-keyd Fl-keye R-keyd T-keye
¥ ¥ 4 v
plaintext ciphertext plaintext
————| PKC}—» PKC - PKC —¥ PKC f—n

Figure 2-8: Providing Secrecy, Authenticity and integrity with Public-Key Ciphers

Even though public-key ciphers provide some fcatures not available in
conventional ciphers, the former are not well suited to most of the applications in
this thesis. For example, public-key ciphers offer some potential advantages over

conventional ciphers in distributing cryptographic keys. The first three applications

The System Model, TRMs and Cryptography

of eryptography in this thesis, as noted at the beginning of section 2.3, do not
encounter complicated key distribution problems and would not benefit from the
use of public-key ciphers. Thus almost all of the techniques employed in this thesis
are based on conventional ciphers and public-key ciphers are employed only in
some applications in Chapter 5. In fact, public-key ciphers are immcdiately
climinated from consideration for most of these applications because of the
relatively low throughput achieved by their implementations, as described in section
2.3.5.

Good ciphers, both conventional and public-key, exhibit high resistance to a
variety of cryptanalytic attacks. Obviously ciphers must resist attempts by attackers
to determine the key required to decrypt a quantity of ciphertext or to discover the
plaintext from which the ciphertext is derived through examination of the ciphertext
(ciphertext only attack). Moreover, an attacker should not be able to deduce the key
used to decipher data even if he is given matching plaintext and ciphertext (known
plaintext attack). The same holds true if the attacker is given the opportunity to
select the plaintext for which matching ciphertext is made available (chosen
plaintext attack). These requirements are motivated by the fact that an attacker will
often be able to know or to choose some plaintext that will be encrypted and
become available to him as ciphertext. For example, in the context of protecting
external software, one might encounter enciphered relocatable program files,
portions of which are likely to contain easily predicted values. In the same context,
an attacker might be able to choose values that would become part of an encrypted

database, providing a chosen plaintext attack.

The ciphers sclected for use in this thesis, the DES and the RSA algorithm are
designed to resist the cryptanalytic attacks described above. Nonetheless, one must
exercise care in using these ciphers or subtle weaknesses may arisc. For example,

not all cryptographic techniques automatically compensate for plaintext that varies

80

The System Model, TRMs and Cryptography

over a very small range of possible values or plaintext that contains recurtitig
patterns. Unless suitable precautions are taken, these plaintext charcteristics may
be visible in the ciphertext, resulting in information disclosure. Techniques for
venfying the authenticity and integrity of encrypted data in the face of attacks often

rely on the presence of predictable information in plaintext and on error

propagation characteristics of ciphers. Since the plaintext encountered in this thesis
may admit o a wide range of values, predictable information must be supplied
explicitly for security purposes. Different ways of using ciphers yield different error
propagation characteristics and this must be considered in designing mechanisms for
checking authenticity and integrity of data. The following sections describe specific

techniques for preventing disclosure and detecting modification.

2.3.2 Block Cipher Techniques

Most modern cryptographic algorithms (conventional and public-key) are block
ciphers, i.c., they operate on fixed-size blocks of plaintext and ciphertext. For
example, the block size of the DES is 64 bits and for the RSA algorithm a block size
of about 320 bits yields comparable security. The simplest way of using a block
cipher is sometimes referred to as the electronic code book (ECB) mode [16],
indicating the analogy to manual cryptographic procedures, and is illustrated in
Figure 2-9. (This and subsequent illustrations omit keys for clarity.) However, this
mode exhibits several shortcomings. If data to be enciphered is smaller than the
block size of the cipher, the data must be padded to produce a full size block.
Similarly, the entire resulting ciphertext block must be presented for decryption, i.e.,
it is not possible to decipher a partial block. [If the data to be encrypted is longer
than a block it must be broken into block-size pieces and cach piece enciphered
separately. This mismatch between the granularity of encryption and the size of

plaintext results in waste, e.g., on average half of each block may be wasted due to

e

this mismatch.

The System Model, TRMs and Cryptogiaphy

[plaintext |

encipher

[ciphertext |

decipher

'

| plaintext |

Figure 2-9: Electronic Code Book Mode for Block Ciphers

With respect to concealment, ECB mede has an obvious deficiency, i.e., identical
plaintext blocks are transformed into identical ciphertext blocks. Thus plaintext
patterns that occur aligned on block boundaries are visible in the resulting
ciphertext. In the case of the DES, if plaintext, when divided into 8-byte blocks, H
exhibits block-size patterns, then these patterns will be visible in the resufting
ciphertext. Moreover, if the bit pattern usced to pad short blocks is constant, an
attacker might be able to perform frequency analysis on the ciphertext blocks to

discover the plaintext. For example, if 32-bit words are enciphered individually and

cach is padded with the same bit string, the resulting ciphertext blocks will vary only

over the range of values assumed by the32-bit words, and this may be small enough

The System Model, TRMs and Cryptography

to allow effective frequency analysis by an attacker. Because of these deficiencies,
ECB mode 1s usually employed only for tasks such as distribution of cryptographic

keys, where the data is random and well matched to the block size.

These concealment problems can be solved by including in cach plaintext block a
non-secret, unique bit string, a quantity designated as an (in-block) initialization
vector (1V), illustrated in Figure 2-10. (The term initialization vector is often tised in
a more restricted sense in cryptography but it serves essentially the same function as

the quantity described here) The inclusion of this bit string makes each plaintext

block different and thus cach resulting ciphertext block is different, effectively

concealing patterns and compensating for limited range plaintext, c.g., short blocks.

This technique works since, in the DES, two plaintext blocks that differ by as little
as one bit yield ciphertext biocks that differ in approximately 50% of the bit
locations. This technique suffers from the drawback that a portion of each block
must be reserved for this unique bit string, thus reducing available bandwidth in
communication applications or wasting space in storage applications. However, if
an application already requires inclusion of a unique bit string as part of each
plaintext block, e.g., scquence numbers in a communication application, this bit

string can serve as an 1V so no additional space is wasted.

An alternative technique for combatting the same problem involves combining
If cach plaintext block with a (block size) initialization vector, via modulo 2 addition,
before enciphering the block. This additive technique is not quite so secure as the
inclusion of an in-block 1V since duplicate ciphertext blocks may result, providing
cryptanalytic opportunitics for an attacker. For example, if two ciphertext blocks
are identical under this scheme, an attacker can work backwards from a knowledge
of the IVs to determine the sum of the plaintext blocks. If he has knowledge of
some of the plaintext in one of the blocks he can determine the value of

corresponding bits in the other block. If the range of the 1Vs is suitably large (say 64

83

The System Model, TRMs and Cryptography

[V] plaintext | | plaintext |

[init vector

encipher encipher

[ciphertext | | ciphertext |

Figure 2-10: In-block and Additive Initialization Vector Techniques

bits), and the 1Vs are chosen pseudo-randomly, this method offers adequate security
since the likelihood of duplicate ciphertext blocks is quite small. The advantage of
this approach is that the Vs take up no space in the blocks, but it is necessary to
know the IV associated with a block for decryption. The values of the Vs must be
implicitly derived from some contextual information if there is to be any space
saving. For example, in a communication application the sequence number

implicitly associated with each transmitted block could serve as an 1V.

The inclusion of a predictable quantity in each block provides a basis for checking
the authenticity and integrity of the block. The object here is to verify that the block
was encrypted by an authorized individual and that it has not been modified in any
way after being encrypted. For a block cipher such as the DES, modification of as
little as one bit in a cipheriext block results in changes to approximately 50% of the
plaintext upon decryption. The same error propagation effcct occurs if a ciphertext
block is deciphered under a key that differs by as little as one bit from the key used

to encipher the block. Thus, the inclusion of a predictable n-bit field in a plaintext

84

- /"™

The System Model, TRMs and Cryptography

block provides a check on the authenticity and integrity of the block which an

attacker can subvert with a probability of 2. This is the probability that the a-bit
field is unchanged if the ciphertext block was modified or if it was encrypted under
a key other than the key used to decipher it. Such a quantity will be referred to as

an authenticity/integrity check field (AICF).

Any predictable quantity can be included in cach block as an AICF, cg., a
constant bit string. However, the functions of an AICF and an 1V can be combined

into a single ficld, reducing the space overhead that would result if an in-block IV

and a separate AICF were employed. Since a combined 1V/AICF ficld must be
large enough to uniquely identify each block and farge enough to detect spurious or
modified blocks this may not be the most space efficient technigue. For example, if
the size of the 1V required to uniquely identify cach block is larger than the size of
the AICF required to detect modification, then an implicit IV and a dedicated AICKF
could waste less space. Despite this ability to combine both functions in a single
ficld, the percentage of cach block devoted to such a field can be significant,
cspecially if the block size is small. For example, in many applications a 16-bit

216 chance of undetcctably

AICF may be adequate, i.e., an attacker is allowed a
violating the authenticity and integrity guarantee provided by the AICF. Butin a
64-bit DES block this 16-bit field represents 25% overhead. One could reduce the

percentage overhead by using @ cipher with a larger block size, but if the application

normally generates plaintext smaller than this block size, waste will result from the

occurrence of partially filled blocks.

One can reduce the percentage of space devoted to security measures through
block chaining encryption techniques. Block chaining techniques encrypt plaintext
of variable lengths (integral multiples of the block size) using some form of
feedback to cryptographically relate the resulting ciphertext blocks. There are a

number of options for feedback mechanisms; the method described below (and 1

85

e

‘The System Model, TRMs and Cryptography

{ plaintext-1 | [plaintext-2 | [plaintext-37]
[init vector }——peg

|encipher

y y
| ciphertext-1 — { ciphertext-2 |— { ciphertext-3 |

Y y

decipher decipher decipher

encipher

| init vector

| plaintext-1 | [plaintext-2 | | plaintext-3 |

Figure 2-11: Plaintext-Ciphertext Block Chaining (PCBC)

later employed in Chapter 4) uses both plaintext and ciphertext feedback and is
designated as plaintext-ciphertext block chaining (PCBC) [12]. In this method, the
first block in the plaintext chain is added (modulo 2) to a block-size IV and the
result is encrypted. Each subsequent block in the plaintext chain is added to the §

86]

B Tl = P

The System Model, TRMs and Cryptography

preceding ciphertext block and 10 the accumulated plaintest sum and then
enenypted. This procedure, and the symmetric deeryption process, are illustrated in
Figure 2-11 for a 3-block chain. (To maximize throughput on decryption, the
additions can be reordered so that the preceding ciphertext block and the
accumulated plaintext chain are added together, while the current ciphertext block
is being decrypted. “This sum is then added o the deerypted block to yield the

original plaintext.) The process is repeated for cach new plaintext chain,

The aiphertest feedback used here effectively masks patterns within a plaintext
chain since cach ciphertext block acts as an IV for the pest plaintext block, The IV
for the first block, either added to the first plaintext block (as shown in the figure) or
an in-block 1V, should be different for cach chain to conceal duplicate initial blocks
m different chains. 1 the IV can be contextually derived as described carlier, then
the additive 1V technigue s more space cfficient as the IV can be implicitly
associated with the chain rather than carried in the first block, The plaintext
feedback employed in PCBC mode provides forward error propagation, i.c.. any
modification of an encrypted block is propagated all the way through to the end of
the chain as thoroughly as if the modification had occurred the last block of the
chain. Thus an AICFE residing in the last block of the chain can be used to detect
modification anywhere the chain, Since an in-block 1V must reside in the first block
of the chain and the AICEF must be in the last block, there is no way to combine the

two in a single ficld in this cipher mode.

Other chaining modes operate in a similar fashion but use only ciphertext or only
plaintext feedback. For example, in ciphertext block chaining mode (CBC), only
ciphertext feedback is employed and modification of an encrypted block propagates
only within the corresponding plainteat block and has only slight cffects on the
following block in the chain. In this mode a conventional error detection code

(EDC), c.g., a longitudinal parity check or a cycle redundancy check, is often

87

The System Model, TRMs and Cryptography

cployed since the cerror propagation required by an AICF is not present.
However, CBC mode is somewhat simpler than PCBC mode and when used with an

EDC it provides adequate authenticity and integrity guarantees. (The EDC is

adequate in this case since an attacker cannot predictably modify the enciphered
plaintext or the EDC.) This mode is often proposed for communication applications
[16]. Block chaining based on plaintext feedback alone is generally unacceptable,
since plaintext patterns may not be effectively masked, even though this mode does

provide forward crror propagation.

2.3.3 Stream Cipher Techniques j

The cryptographic modes described above do not accommodate plaintext that is
not an integral multiple of the cipher block size without waste. The 64-bit block size
of the DES is well suited to most of the applications in this thesis since two 32-bit
words fit into a DES block. Much of the plaintext 1o be encrypted is an even
number of words long and for large data structures or long messages wasting half a
block (32 bits) is usually not a scrious problem. However, when plaintext is sub-
block size, e.g., a 32-bit word, this level of waste poses a serious concern, To solve
this problem, block ciphers can be used as stream ciphers that encrypt plaintext
strings of any size. The central concept is to use the block cipher to generate blocks
of pscudo-random bits, referred to as a cryptographic bit stream, portions of which
arc added to the plaintext to conceal it. (Because the cryptographic strength of this
technigue is based on the secrecy of this bit stream, PKCs cannot be applied here
dircctly unless they are used as CCs, i.c., with no public knowledge of the key used

to generate the cryptographic bit stream.)

There are a number of ways (o generate a cryptographic bit stream using a block

cipher, just as there are several choices for feedback in the block chaining modes

described in the preceding section. For example, in what is often viewed as the

oo
[

The System Model, TRMs and Cryptography

simplest form of stream cipher, an autokey cipher [32], bit strcam generation begins
by enciphering an IV, The resulting crypto bit stream is added to plaintext, to
encipher it, and is fed back as input to the cipher to generate further crypto bit
stream, as illustrated in Figure 2-12. Decryption is identical to encryption, i.e., the
same crypto bit stream is added to the ciphertext to yicld plaintext. Plaintext of any
size can be accommodated by this cipher, e.g., by sclecting a fixed portion (a bitor a
byte) of each crypto bit stream block to combine with the plaintext and discarding
the remainder. Of course, discarding a portion of the bit stream causes the
performance of the cipher to suffer, e.g., Figure 2-12 shows only one-fourth of each

block being used so the cipher runs at one-fourth of its maximum rate.

shift register shift register
L 1 | | 1 e
encipher encipher
[| discard | [T discard |
— ——D
plaintext ciphertext plaintext
ENCIPHER DECIPHER

Figure 2-12: Autokey Stream Cipher Example

89

The System Model, TRMs and Cryptography

Depending on the apphication, the crypto bit stream may be generated
continuously or it can be "re-initialized” periodically with a unique 1V. For
example, in some communication applications o continuous bit strcam is transmitted
to conceal all message traffic (or the lack thercof) whereas in other applications a
new IV is used for cach message. Note that the Vs must be unique since they
determine the crypto bit stream, and if two mcessages were enciphered using the
same 1V (bit stream), an attacker could add the messages on a bit-by-bit basis to
yield the sum of the plaintext. A striking feature of this stream cipher is that it
provides no error propagation, i.c., if a bit of ciphertext is complemented, the
corresponding plaintext bit is complemented, but no other plaintext bits are
affected. (However, if a bit of ciphertext is lost, the decrypted plaintext will be
garbled due to shifting over of the crypto bit stream before addition.) Thus neither
an AICF nor a conventional EDC can be used with this stream cipher for
authenticity and integrity checking due to this lack of error propagation. (An
attacker, knowing what kind of EDC is employed, can modify the plaintext in a
fashion that is invariant under that EDC algorithm.)

However, a cryptographic error detection code (CEDC), a cryptographic function
calculated on the plaintext, can be employed to detect modification. (A CEDC used
to authenticate data which is not encrypted is sometimes referred to as cryptographic
check digits [4).) Since a CEDC is a complex function of the plaintext on which it is
calculated and on the secret key used in the calculation, an attacker cannot modify
the plaintext in a fashion which is invariant under the CEDC. (An n-bit CEDC, like
an n-bit AICF, allows an attacker a 27" chance of undetectably modifying the
covered plaintext.) A CEDC can be calculated in a number of ways. For example, a
block chaining mode like PCBC or CBC can be used to encrypt the plaintext
(padded if necessary to be an integral number of blocks long) and a portion of the
last ciphertext block gencrated in this fashion can serve as a CEDC (since it is a

cryptographic function of all the preceding plaintext). The other stream cipher

9%

‘The System Model, TRMs and Cryptography

mode described below also may be used to generate a CEDC. Thus the fack of error
propagation in an autokey stream cipher does not preclude its use where
authenticity and integrity guarantees are required. However, providing these
guarantees requires additional operations which may translate into reduced

throughput or additional hardware.

Another stream cipher, cipher feedback mode (CFB) [16], is illustrated in Figure
2-13. To begin, a block-size 1V is input to the cipher and encrypted to gencrate a
cryptographic bit stream block. The plaintext is added to this bit stream and the
resulting ciphertext is shifted into the cipher input and encrypted to generate the
next crypto bit stream block. f plaintext is supplied in sub-block size quanta, e.g.,
bytes or bits, then a corresponding portion of the crypto bit stream is used and the
remainder of each block is discarded, as in the autokey cipher described above. This
process is repeated until no more plaintext remains to be encrypted. Decryption is
accomplished by a symmetric, but not identical, procedure, i.e., generating the same
crypto bit stream and adding it to the ciphertext to produce the plaintext. Figure 2-
13 illustrates CFB mode encryption and decryption applied to plaintext quanta that

are one-fourth block size.

In CFB mode, as in autokey mode, it is essential that cach plaintext chain be
enciphered using a different IV, Since the crypto bit stream is a function of both the
1V and the plaintext in CFB mode, using the same 1V on two plaintext chains results
in duplicate crypto bit strcam only as long as the plaintext chains are identical.
Nonetheless, to avoid exposing any data, the 1Vs should be unique for each
independently encrypted chain. As befor, the 1V may be implicitly derived or may
be carried with cach chain. This mode provides excellent concealment of plaintext

patterns but the crror propagation is limited. This strcam cipher mode exhibits

crror propagation analogous to CBC mode. If a bit of ciphertext is complemented,

the corresponding plaintext bit is complemented but subsequent quanta of plaintext

9N

‘The System Model, TRMs and Cryptography

shift register shift register
L l [L I [}
enciphet] encipher
| discard | | | discard |
g~ \
plaintext ciphertext plaintext
ENCRYPTION DECRYPTION

Figure 2-13: Cipher Feedback Mode Stream Cipher

are unpredictably garbled untit the input shift register is cleared of crroneous
ciphertext. For the DES, the shift register is 64 bits long and thus error propagation
affects 64 bits of plaintext following the quanta containing the error. This error
propagation characteristic means that the final enciphered quanta of plaintext in a ﬁ
chain exhibits no error propagation at all. Some other stream cipher modes can
offer forward error propagation, but all suffer from the defect that the final plaintext

quanta in a chain exhibits no error propagation.

Since the last quanta in a chain can be modified with predictable effects, one
cannot place an EDC or AICF and data it is protecting in this quanta. (An attacker
might be able to modify the data in a fashion that is invariant under the EDC or he
could modify the data and not affect the AICKF.) One can avoid this problem by

isolating the EDC or AICF in the last granule, adjusting the quanta size or padding

92

|
|
;
¥
)

The System Modcl, TRMs and Cryptography

the data if necessary to accomplish this. (An AICF can be used only with a stream
cipher mode that exhibits forward error propagation, not with the CFB mode
illustrated here)) However, this need to segregate the EDC or AICF imposes a
throughput penalty and may introduce some complexity when plaintext chains are
sub-block size. For example, to encipher 32 bits of data and a 16-bit EDC, the DES
must cither adopt a 16-bit quanta for enciphering everything or it must change
quanta size from 32 bits for the data to 16 bits for the EDC. The first approach is
simpler but requires three DES operations per 48-bit data-EDC chain, whereas the
second, more complex approach requires only two DES operations. If this lack of
error propagation were not a concern, all 48 bits could be enciphered using the
output from one DES operation. A CEDC, as described above for autokey mode,

also can be used to provide an authenticity and integrity checking capability.

2.3.4 An Application Example: Secure Network-based Distribution of

External Software

The monolithic TRM design presented in section 2.2.2 suffers from a dearth of
secure T&A storage. In order to distribute cxternal software using this design, the
vendor requires a secure communication path between himself and cach TRM.
Even in system designs where sccure T&A storage is available, nctwork-based
distribution of external software may be preferred. Secure communication facilities
also may be used to transmit accounting or debugging information to a vendor, so
these facilities are important in all system designs. The following discussion
describes how to provide sccure communication using the cryptographic techniques
developed in this chapter. This example introduces the security requirements
usually associated with connection-oriented communication and presents some
common technigues employed to achieve these requirements. Chapters 3 and 4
show how these requirements and technigues are applicable to the problem of

computer system design to protect external software.

93

The System Model, TRMs and Cryptography

First it is necessary to define what is meant by secure TRM-vendor
communication. Communication between the TRM and the vendor is effected by
exchanging messages on a full duplex connection (virtual circuit) using some
communication facility, e.g., a public packet switched network [15] or the dialup
phone nctwork. Assume that some standard transport-level communication
protocol [25] 1s employed, providing a connection that is reliable in the face of (non-
malicious) errors. The security requirements for this application have been studied

extensively and are readily stated.
1. The text of messages must be concealed.

2. Characteristics of the connections should be hidden, e.g., the length of
messages and the identities of the ends of the connection. Observation
of characteristics such as these is termed traffic analysis.

3. The authenticity and integrity of cach message must be guaranteed.

4. Each message must be ordered with respect to other messages
transmitted on the connection.

5. The timeliness (currentness) of the connection must be ensured.

To achieve these requirements an additional layer of protocol, a security protocol,
is introduced. This protocol lies above the transport layer7 and below the
application protocols used to distribute new releases of external software, to report
usage statistics from the TRM, etc. Figure 2-14 illustrates the format of messages in
the security protocol. In steady state operation, the security protocol accepts each
message gencrated by an application, prefixes it with a sequence number and a
control ficld and appends an EDC or AICF. The resulting message is encrypted in

its entirety and delivered to the transport protocol.

7/\ properly designed transport layer protocol can provide the facilitics required for secure
communication with the addition of encryption. 'However most cxisting transport protocols do not
provide these facilities and thus a separate protocol layer is introduced here,

94

T T R ——— et i ats b ee i e AR e st S 7,

The System Model, TRMs and Cryptography

sequence #| control| applicationdata| EDC/ACF

Figure 2-14: Message Format for Sccure Connection Application

To provide conccalment and a basis for authenticity and integrity verification, the
entire message is encrypted using a block chaining technique such as PCBC or CBC
mode. (The control ficld can be used to indicate if padding was nceded and, if so,
how many padding characters were inserted.) These modes are simple, convenient
and well suited 1o this application. The sequence number is large enough, say 32-
bits, so that it does not cycle during a connection. To prevent duplicate sequence
numbers from being generated by the ends of the connection, the sequence number
space is divided in half and each end numbers messages using its half of the space.
For example, one end could count using odd sequence numbers and the other end
could use even sequence numbers, By placing the sequence number at the head of
the plaintext chain it serves as an in-block 1V. The sequence number also orders all
messages on a connection, fulfilling the fourth requirement. The EDC or AICF at
the end of the message is checked to determine the authenticity and integrity of each

message in accordance with the third requiremeant.

The second requirement, preventing traffic analysis, «.n be met in part by
padding messages and transmitting durmmy messages to hide length and frequency
of transmission characteristics. However, this technigue wastes communications
bandwidth and may be too expensive to be feasible. Concealing origin/destination
patterns is even harder and cannot be accomplished on an end-ro-end basis in most

communication nctworks. Through origin/destination analysis an attacker conld

95

AD-ALO4 678 MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR COMPUTE==-ETC F/6 9/2
PROTECTING EXTERNALLY SUPPLIED SOFTWARE IN SMALL COMPUTERS.(U)

SEP 80 S T KENT
UNCLASSIFIED MIT/LCS-TR-255 NL

The System Model, TRMs and Cryptography

learn the identities of clients of various vendors, and by examining the volume of

text transmitted he could learn which programs were being distributed. Some

vendors may be concerned about these threats posed by traffic analysis and will
have to institute appropriate countermeasures (see [16]) but in most cases vendors

will probably ignore such threats,

The final requirement calls for appropriate key distribution techmiques and a
connection initiation procedure utilizing a challenge-response protocol. To illustrate
these measures consider the following scenario for a secure connection between a
TRM and a vendor. Key distribution in this application is quite simple. (For more
complex key distribution environments, one might use a public-key cipher in ECB
mode to distribute a DES session key, as described in Chapter 5.) At the time of
manufacture, or thereabouts, a secret master key is generated and loaded into each
TRM by the vendor. This master key is different for each TRM and is known only
to the vendor. To enable sectire communication, the TRM establishes a connection
to a vendor computer using the transport protocol. (The assumption here is that the
TRM initiates the connection since the vendor is expected to be available via a
network at all times, but the TRM may be attached to a network only when

required.)

The TRM identifies itself to the vendor by transmitting its (unique) serial number
unencrypted. The vendor uses that serial number to lookup the master key for the
TRM and generates a random session key, to be used only for this connection. The
vendor then enciphers the session key under the TRM master key and transmits it to
the TRM where it is deciphered and used for further secure communication. The
use of a distinct session key for each conncction offers several advantages since the
same plaintext cnciphered under different keys yiclds different ciphertext. Thus,
the IVs used here need be unique only on a per-connection basis to provide

adequate concealment. Also, messages from previous connections between the

9%

The System Model, TRMs and Cryptography

vendor and this client or connections between the vendor and other clients cannot
be replayed or misrouted to confuse either end of the connection (the AICF or EDC

would almost certainly be invalid when enciphered under a different key).

i With a session key in place, the vendor and the TRM are in a position to
challenge one another to verify the time integrity of the connection. Since the
vendor generated the session key, he knows the connection is current if the TRM

can send messages that pass the usual integrity and authenticity checks (since the

messages are enciphered under the session key). Thus there is no explicit challenge
carried out by the vendor. However, the TRM, must carry out a challenge protocol
to establish that the session key just received is current. The TRM effects this
challenge by generating a random bit pattern, encrypting it using the session key
and transmitting it to the vendor. The vendor decrypts the bit pattern, transforms it
in some predetermined fashion, e.g., complementing half of the bits in the pattern,
encrypts this response to the challenge and transmits it to the TRM. The TRM
decrypts and checks this response and if it is correct, the timeliness of the connection
is verified. This prevents either end from being tricked by a recording of a prior
connection initiation sequence. Once this procedure is completed, regular message
transmission can begin. (The messages exchanged during secure connection
initiation are distinguished from later traffic through appropriate values in the

message control field.)

2.3.5 Parameters for Actual Ciphers

To complete this discussion of cryptographic techniques, it is necessary to project
appropriate values for cipher. parameters, based on existing ciphers and !
implementations, just as processor capabilities were projected in section 2.1.2. The 1
DES serves as our paradigm for conventional ciphers since it is the most thoroughly

studied, modern conventional cipher described in the open literature and since there

9

)

The System Model, TRMs and Cryptography !

arc a number of hardware realizations on which projections can be based. The DES
operates on 64-bit blocks of text and it employs a 56-bit key. The algorithm |
performs an initial permutation on the input block and divides it into two 32-bit |
half-blocks. A round of the cipher involves expanding the half-block, adding in
] sclected key bits, performing a substitution and a permutation and then adding in
the other half-block and exchanging the half-blocks. Sixteen of these rounds are

performed and the half-blocks are concatenated and permuted again to complete

the encryption/decryption process.

The fastest current DES implementation (a 4-chip sct developed by Fairchild)

transforms a 64-bit block in about 3.2us and requires another 1.6us to load or
unload the data (8 bits at a time), for maximum throughput of about 13 Mbits/s
{14]. This chip set, like many other implementations, allows loading of input while
the algorithm is executing. Discussions with the designer of this DES chip-set
indicate that much faster, single-chip implementations could be produced over the
next 3-5 years if suitable demand develops. The projected implementations will be
capable of transforming a 64-bit block in 500-1000ns, corresponding to a bandwidth
of 64-128 Mbits/s. (The data paths for loading and unloading are likely to be 16 or
32 bits wide for the intended applications.) Even if the next generation of DES
chips do not quite achieve this speed, many of the protection mechanisms proposed
in this thesis, most notably encrypted storage designs in which primary memory is
packaged with the processor, can be implemented without significant performance

problems.

The algorithm developed by Rivest er al. (the RSA algorithm) serves as the
paradigm for public-key ciphers for several reasons. The RSA algorithm is the most
widely known and carefully studied public-key cipher, one for which a hardware
prototype has been constructed and tested, and the only public-key cipher that

supports the double transformation technique for authenticity and integrity

The System Model, TRMs and Cryptography

verification described in section 2.3.1. ‘The algorithm encrypts and decrypts blocks
of data by exponentiation with respect to a modulus that is the product of two large
primes. The encryption and decryption keys are the exponents. Since this
algorithm is not a standard no specific block size has been mandated, but 1o provide
sccurity comparable to that of the DES, blocks (and keys) should be about 320 bits
in length [17). (Public-key cipher block and key sizes are generally much larger than
those for conventional ciphers because an attacker can carry out only an exhaustive
scarch for a conventional cipher key, but he can search for a secret PKC key using
the mathematical structure of the public-key cipher.) This block size could be
changed to better fit application requirements, however decreasing the size weakens
the cipher and increasing it reduces the encryption/decryption rate. As noted
carliecr, the prototype RSA single-chip implementation exhibits a projected
throughput of about 5 Kbits/s [28).

2.4 Conclusions

The first portion of this chapter described in greater detail the computer system
model used throughout the remainder of this thesis. This model describes a fairly
conventional, bus-oriented 32-bit computer that is characteristic of many current
mini- and microprocessor designs. The model details introduced in this chapter are
those required to design the protection mechanisms developed in Chapters 3 and 4.
However, not all of the protection mechanisms depend on all of the system
characteristics described here. Thus, some of the protection mechanisms are

independent of many system details.

The second portion of this chapter examined tamper-resistant modules (TRM) in
detail and described how external software could be protected in a computer system

based on a monolithic TRM design. The TRM concept is important since it

The System Model, TRMs and Cryptography

embodies all of the physical protection characteristics that depend on the level of
security required in a particular environment. In this fashion none of the other
protection mechanisms developed throughout the thesis need deal with physical
protection issues. The monolithic TRM design presented in this chapter might be
adequate for some applications but it exhibits a number of limitations, e.g., it cannot
support demountable storage media. This motivates the use of cryptographic
techniques to overcome these limitations. The last portion of the chapter introduced
some terminology, concepts and techniques from modern cryptography. This
material is included to provide background for readers who are not familiar with
this area. The explanations provided here are not intended as a general primer on

cryptography, but rather are directed toward the specific application areas

encountered in the thesis.

Chapter Three

An Encrypted Bus Approach to

Protecting External Software

The arsenal of cryptographic techniques presented in section 2.3 suggests several

ways to protect external software in computer systems without enclosing all of the

sccurity relevant components in a single TRM. This chapter explores in detail an
approach based on viewing a computer system as a miniature communication
nctwork. In this approach, cach security relevant component (or collection of
components) is enclosed in a TRM and communicates with other components over a
physically unprotected bus. Each TRM is equipped with a special cryprographic bus
interface (CBI) that provides secure communication among the TRMs. The major
advantage of this approach over the monolithic TRM design is that it permits
distribution of the secure components among several TRMs. Thus it becomes
‘ possible to incrementally change a system through sclective replacement or addition

of TRM-packaged components (for maintenance or expansion) and many problems

associated with TRM sizing become more manageable. One might even provide a
form of demountable storage in this type of system, by packaging the media and its

access hardware in a demountable TRM, although such storage would not be

competitive with conventional, demountable media in terms of cost or convenience.

An Encrypted Bus Approach

3.1 Configurations and Overview

The system configurations pictured in Figures 3-1 and 3-2 characterize the ways
in which TRM packaging can be employed in this communication security design
approach. SYSTEM A represents the smallest change from the monolithic TRM
design. providing a separate TRM only for the transfer and archival (T&A) storage
device. SYSTEM B provides greater flexibility by employing separate 'TRMs for
secondary as well as T&A storage devices. In both of these configurations the
organization of the processor and primary memory, i.c., the presence or absence of
cache or a dedicated memory bus, is irrelevant since they are contained wholly
within a single TRM. In these configurations, the cryptographic bus interface (CBI)
for the main TRM (the TRM containing the processor) also operates like the secure
bus coupler (SBC) described in section 2.2.2, i.c., it keeps unencrypted traffic in the
main TRM from appearing on the bus outside this TRM and it restricts access to
primary memory locations by DMA devices outside the main TRM. 1n SYSTEM C
and SYSTEM D the maximum degree of flexibility available in this design
approach is attained as each device is packaged in a separate TRM. Here the choice
between single and dual bus configurations has a significant impact on the design, as

detailed in the following sections.

The techniques described in section 2.3.4 could be applied directly to this design,
but the characteristics of bus communication differ enough from thosc usually
encountered in general communication environments to warrant modifying those
techniques. For example, since bus operations involve very few bits (about 32 bits
of data or address plus some control bits), the additional information required for
security (c.g., EDCs and sequence numbers) represents a significant percentage
increase in the amount of data transmitted. Transporting this extra information
requires either additional bus lines, increasing the cost of bus interfaces, or

additional bus cycles, increasing transaction time and reducing bus availability. In a

An Encrypted Bus Approach

; cPU § l
CBI
P-MEM S-MEM [oor] other peripherals
T&A
SYSTEM A
CpPU rfla; '
CcBI CcBI
P-MEM r—_l I—J_l other peripherals
S-MEM T&A
SYSTEM B .
Figure 3-1: Two System Configurations Employing TRMs with CBls
1
103

R i P

’—_————-————_—___'_H

An Encrypted Bus Approach

C
CPU 8 f— [}
Cl&l_l oei] CBI1
[c [oo | [co] other
P-MEM S-MEM T&A peripherals
SYSTEMC
C
CPU &
CBI
csi cB!
E-—l [_ other peripherals
S-MEM » T&A
=]
P-MEM
SYSTEMD

Figure 3-2: Two More System Configurations Employing TRMs with CBls

An Encrypted Bus Approach

similar vein, the high speed, low delay nature of bus transmission means that any
bandwidth limitations and delays introduced by cryptographic and protocol
techniques could dramatically slow down the system. Thus, in adapting
communication security meastires to the bus environment, special care must be
taken to minimize delays, maximize bandwidth and reduce the amount of additional
mformation transported with cach operation. Morcover, the additional hardware
required for secure bus communication must not significantly increase the cost of

the computer system, ,

The cryptographic techniques developed in this chapter are carefully tailored 0 !
the bus cnvironment, taking advantage of the highly structured nature of
transactions and the high rcliability of bus communication to minimize overhead on
bus transactions. Special cipher modes and crror detection technigues are employed
to minimize the number of additional bits transmitted and the delay associated with
sccuring bus transactions. In engincering protection mechanisms for the encrypted
bus approach, three classes of transactions involving TRM-packaged system

components are distinguished:
1. Processor-generated references to primary memory
2. Transfers between primary memory and DMA peripherals

3. Transactions used by the processor to control DMA peripherals and
used by these peripherals to interrupt the processor
The first and third transaction types are referred to as simple in contrast to the
aggregate transactions uscd to cffect DMA transfers. Transactions of the first type
constitute the bulk of bus traffic. Any reduction in bandwidth or increase in delay
experienced by these transactions significantly affects system performance.,

Transactions used for DMA transfers constitute a much smaller percentage of all

bus traffic and they are qualitatively different in that they deal with aggregates of

An Encrypted Bus Approach

data. This latter characteristic makes it possible to reduce per-transaction overhead
by validating a data aggregate as a whole rathier than checking each word of the
aggeregate as s tansterred. The last type of transactions, those employed in the
control of DMAS peripherals, are very infrequent compared to the other types of
transactions, and thus system performance is affected only shightly if these

ransactions become somewhat “slower.”

3.2 Security Requirements for the Encrypted Bus Approach

As noted in Chapter 1, vendors have two major requirements for protecting
external software in this context: preventing release of and detecting modification of
information. In computer systems based on the encrypted bus approach, the bus
constitutes the only vulnerable, security relevant portion of the system and thus bus
transactions are the principal target for an intruder. Even though the bus is a
broadcast transmission medium, the flow of data among devices s actually
connection-like in nature, not broadcast oriented. The flow of data among TRM-
packaged devices corresponds to the three types of transactions described in the
preceding section, ie., data flows between the processor and primary memory,
between primary memory and DMA peripherals and between the processor and
these peripherals. The data flow is thus implicitly segregated into distinet (duplex)
connections, one between cach pair of devices as described above. Hence the
requirements for secure bus operation are, at a high level, the same as those for
general purpose, connection-oriented communication environments as described in
section 2.3.4: preventing disclosure of message text and traffic analysis, ensuring
message authenticity, integrity and ordering, and cnsuring the timeliness of the

connection,

8/\ll of the TRM-packaged peripherals are assumed to be DMA devices. If non-DMA peripherals
were employed. this same class of transactions would be used for control purposes.

106

An Encrypted Bus Approach

These requirements are eastly translated to the context of bus communication

R T o ——

among TRM-packaged devices. Here, disclosure of message text refers to exposure
of the data in PRESENT-DATA opcrations. Traffic analysis in this context imolves
exposure of the addresses in PRESENT-ADDRESS operations, identification of the
Q TRMs cengaged in cach transaction, determination of operation types and

observation of patterns of data transfer. The authenticity, integrity and ordering

requirements are directly applied to the bit patterns representing cach operation on
f the bus. Thus cach received bit pattern must be checked to verify that it was

generated by a CBl-equipped TRM in the system, that it was not modified en route

and that it arrived in proper order with respect to other operations between this

[PPSR

device and its partner in this transaction. The CBIs must be initialized to a known
state and must verify the timeliness of connections before data transmission may

begin.

In this context traffic analysis may be a more serious threat than in the client-

L M ¥ L i 1

vendor communication scenario described in section 2.3.4. For example, by

: observing the pattern of references to memory made by a processor, noting the

i

locations accessed and whether the processor reads or writes these locations, an
attacker may be able (o deduce quite a bit about the nature of the procedure being
executed. Similar observations of data transfers between primary memory and
cache or between sccondary or T&A storage and primary memory provide clues as
to the nature of the procedure. How much information can be gained in this fashion
depends to a great extent on the system configuration. For example, SYSTEM C
and SYSTEM D provide more opporiunitics for traffic analysis than SYSTEM B
which in turn provides more opportunitics than SYSTEM A, Note that adding a
cache to the processor in SYSTEM C or SYSTEM D reducces the opportunitics for
traffic analysis since most references to primary memory are satisfied by the cache

and thus do not result in transactions outside the processor TRM. {

107

R L PN ; -

An Encrypted Bus Approach

‘The amount of ntormation gained through traffic analysis also depends on the
extent to which charactensties of traffic are visible. In the worst case an attacker can
discern the addresses in PRESENT-ADDRESS operations, as well as identify the

operation types. In a less severe scemmio an attacker could identify the TRMs

__Amwobed ina transaction and determine the transaction type but would not be able

to discover the specific locations involved in the transfer. Although it would be
preferable if all traffic analysis were prevented, as in the monolithic TRM design,
this 1s prohibitively costly to achieve becanse of bus characteristics and so some

compromise is required.

While it is possible and practical o conceal the addresses in PRESENT-
ADDRESS operations, it is not feasible to hide origin-destination patterns ai the
TRM level. An intruder can passively wiretap the bus between cach TRM and
discover which TRM is transmitting, but not which is receiving. However, bus
transactions follow a very simple pattern of a request operation followed by a
response, so the intruder can easily dclcrmi’nc which TRMs are involved in a
transaction. Since the identity of the TRMs involved in a transaction cannot be
concealed, the only way to obscure origin-destination patterns is for TRMs to
gencrate dummy transactions at random intervals. Yet if the dummy transactions

interfere with genuine bus traffic severe performance degradation may result.

If buses were multiplexed in a time division fashion, with each TRM assigned a
time slot to carry out a transaction, the dummy transaction technique could be
employed. But the demand access nature of buses and the arbitration schemes
commonly employed make this technigue infeasible for two reasons. First, a device
cannot know in advance whether a dummy transaction would conflict with a
genuine transaction in bidding for the bus during an arbitration procedure. Second,
even if a dummy transaction were initiated only when there were no genuine

demands, the bus would be busy for an interval during which a genuine demand

108

b S RPN DAY ik b T Y e b A

An Encrypted Bus Approach

might arise. In a system with a priority structure for bus arbitration the first
problem could be overcome by having the lowest priority device (usually the
processar) be the only generator of dummy transactions, but the second problem
would remain, Only on a dedicated memory bus with transaction interleaving could
the processor/bus coupler inject dummy transactions without degrading bus

performance.

The preceding analysis suggests that preventing origin-destination analysis and
masking general patlerns of bus traffic at the TRM level is infeasible except in
limited contexts. Hiding the types of transactions, i.e., preventing an intruder from
distinguishing among read, write and interrupt transactions or their extended
counterparts, also is infeasible in most contexts because the patterns of bus
utifization and/or the duration of the transaction are different for cach type of
transaction. Thus signals on bus control lines, i.e., lines other than A/DO-31, need
not be concealed. Only in the context of a dedicated memory bus with transaction
interleaving could these transaction characteristics be hidden. (This type of bus
arrangement is highly analogous to a simple, full duplex communication link and
thus is amenable to link encryption technigues, unlike a general purpose or 170
bus.) Thus, if traffic analysis threats such as these are a major concern,
configuiations such as SYSTEM A or SYSTEM B should be considered.

3.3 Securing Simple Transactions

This section develops techniques for securing simple transactions. These are the
transactions used in the control peripherais in all four system configurations and in
processor-memory transfers in SYSTEM C and SYSTEM D. The same protection
mechanisms are applied to both types of transactions. Processor-memory

transactions will be processed more quickly than control transactions only because

109

An Encrypted Bus Approach

the CBIs at the bus coupler and primary memory will incorporate multiple
cry ptographic devices and extra bus lines to achieve greater paratlelism. (The need
o employ additional bus lines to transport error detection information for this type
of transaction strongly motivates adoption of the dual bus configuration, SYSTEM

D. to minimize the cost of the extra lines)) Otherwise, the two transaction types are

treated identically, simplifying CBI system design.,

For simple transactions, encryption is required both for scerecy and to enforce
authenticity, mtegrity and ordering requirements for transactions. Of course the
data in PRESENT-DATA operations must be concealed, and if traffic analysis is a
concern, the addresses in PRESENT-ADDRESS operations also must be concealed.
In the case of a simple read transaction, the bus master must verify that the data
returned in a PRESENT-DATA is from the location specificd in the immediately
preceding PRESENT-ADDRESS, that the returned data has not been modified in
transmission and that it is timely (not a copy of data from a previous bus operation).
In the case of a simple write transaction the slave must verify the authenticity,
integrity and ordering of cach PRESENT-ADDRESS and PRESENT-DATA and
the master must do the same for cach ACKNOWLEDGE. On an interrupt, the
master must verify the authenticity, integrity and ordering of the vector in the
PRESENT-DATA and the slave must do the same for the ACKNOWLEDGE it

receives.

Note that the ordering requirements set forth here are strictly per-connection, i.e.,
transactions between the processor and primary memory are explicitly ordered
among themscelves but are not explicitly ordered with respect to transfers between
DMA devices and primary memory. Thus the requirements e :licitly impose local
ordering (on cach connection) but not an explicit global ordering. Yet global
ordering is important. For example, data may be written into primary memory by

the processor and then transferred to secondary storage. These two transfers take

110

Apeae

-

< ot

An Encrypted Bus Approach

place over two distinct connections and thus do not fall under the explicit. per-
connection ordering requirements set forth above. However, the processor initiates
all data transfers, either directly or through control of DMA device activities, and
thus it imposes a global ordering of these transfers even though the transactions are
not explicitly, globally ordered. For example, in the example noted above, the
processor will not initiate the DMA transfer to secondary storage until it has written
the data into primary memory. Thus global ordering is imposed implicitly by the

processor, relying on explicit, per-connection ordering of transactions.

Readers who do not wish to delve into the details of how simple transactions are
secured should skip to section 3.4 (page 132), to the discussion of how aggregate

transactions are secured.

3.3.1 Securing simple read Transactions

The security requirements stated above for « simple read constitute a relaxation of
those stated in scction 3.2 in that the slave does not carry out any authenticity,
integrity or ordering checks on a PRESENT-ADDRESS. These relaxed
requirements allow an intruder to submit a spurious PRESENT-ADDRESS to the
slave and receive an encrypted PRESENT-DATA response. A spurious PRESENT-
ADDRESS will not adversely affect system sccurity so long as the resulting
PRESENT-DATA cannot be used to spoof the master, i.c., the master must be able
to verify that a PRESENT-DATA is an authentic response to the PRESENT-
ADDRESS just issued by the master. (Of course, the concealment mechanisms also
must not be alfected by this relaxation.) ! the checks noted above are carried out
on cach PRESENT-DATA, then the master cannot be spoofed in this fashion. Thus
this relaxation of requirements docs not introduce any new vulnerabilitics and it
avoids the adverse performance effects associated with calculating and transmitting
an error detection code as part of cach PRESENT-ADDRESS in a simple secure

read.

1

e

T

! An Encrypted Bus Approach

For processor-memory transactions, the cryptographic facilitics must exhibit a
theoughput sufficient to keep pace with bus operation and must introducc minimal
delay. Since both addresses and data are to be concealed on the bus, cryptographic

devices must exhibit a bandwidth of about 106-213 Mbits/s at peak bus utilization.

(These figures are for a cacheless processor; for a cache-equipped processor an even
higher bandwidth is required.) Since the maximum bandwidth projected for single-
chip DES devices ranges from about 64-128 Mbits/s, these devices are not capable
of mecting peak bus traffic requirements in comparably scaled systems. (The
assumption here is that one will employ fast DES chips in conjunction with a fast
bus and fast primary memory, and slow DES chips with a sfow bus and memory.)
Morcover, these DES devices require about .5-1.0gs to transform a 64-bit block, a
processing delay equivalent to five bus cycles, and this delay may be a serious
problem even if the bandwidth is adequate. In SYSTEM € and SYSTEM D the
memory and the bus coupler CBIs must keep up with processor-memory

transactions and this is « difficult task.

A stream cipher mode of operation, rather than a block mode, is essential here
because of the need to maximize throughput and to minimize delay. Only about 32-
bits arc encrypted in each bus operation, crecating an immediate granularity
mismatch between the plaintext and a block mode of operation. A block mode also
imposes a delay (1) to encrypt and decrypt the data since the algorithm cannot be
exccuted until thcctcxt is available. To better understand why block mode was
rejected, consider the processing steps involved in a simple secure read based on
ECB mode cncryption. The event graph and timing diagram in Figure 3-3
ilustrates these steps. The address in the PRESENT-ADDRESS and a unique
tV/AICF are encrypted using ECB mode (C1), transmitted (11,72) and deciphered
at primary memory (C2). (The 1V/AICF used here is just a sequence number.) The
data is retrieved (A), enciphered along with the incremented 1V/AICF (C3), and
transmitted to the processor (T3,T4) where it is dccipherced (C4) and the AICF is
checked (=).

112

An Encrypted Bus Approach

address data confirm

Master @ Q a
Bus (9 (=) () ()
Slave @ o @

A o]
D A
D T
R A
Master +*
Ct C4
M-crypto
T1|T2 T3!T4
Bus
Cc2 C3
S-crypto
A
Slave

01234567890123456789012345

Figure 3-3: Event Graph and Timing Diagram for an ECB Mode Secure Read

The total transaction time for this £CB mode simple secure read is 47 + 4T +
¢ t
T (25 bus cycles), as compared to a standard read time of three bus cycles. The
a

timing expression is casy to derive since there are no parallel processing steps in the

113

An Encrypted Bus Approach

event graph, and that is the root of the performance problem. To support the
maximum transaction rate as a standard system, one would have to cmploy
additional cryptographic units, interleave transactions and add another 32 bus lines
(since twice as many bits are transmitted here as in a standard read). Thesc changes
would significantly increase the cost of CBIs. Even with these added facilities, this
design exhibits an inherent delay that translates into over a 730% increase in
effective memory access time for a cacheless processor. For cache-equipped systems
a standard extended read could be secured in an analogous fashion, but the cffective
memory access time would still increase by about 48-120%. These delays are so
great as to preclude the use of this mode even with the CBI enhancements noted

above.

A stream cipher mode of operation provides opportunities for parallelism and for
precomputation of the crypto bit stream, so that a high throughput rate can be
maintained with minimal delay. Since encryption and decryption are accomplished
by adding (modulo 2) cryptographic bit stream to text, if the bit stream can be
compulted in advance, almost no delay is introduced for encryption and decryption.
However there are two problems if a stream cipher mode such as CFB is used. First,
in order to take advantage of the crror propagation characteristics of CFB, the
quanta size must be adjusted so that data and EDC are covered by different crypto
bit stream quanta. In this application the data is usually 32-bit words or addresscs,
so the quanta size would probably be 32 bits. This quanta size halves the bandwidth
provided by the cipher, a serious problem given the timing of DES calculations and
bus cycle times for the systems of interest. Sccond, there is a delay (7'(') in providing
the crypto bit stream for the EDC, since this bit strecam cannot be generated until
the data being protected has been enerypted. (Remember, the ciphertext must be

fed back into the algorithm to gencrate the next quanta of ¢rypto bit stream.)

An Encrypted Bus Approach

To avoid these problems of reduced bandwidth from cryptographic devices and
substantial delays for transmission and checking of EDCs, a degenerate form of
autokey cipher mode is used. This stream mode employs no feedback from
cleartext, ciphertext or the crypto bit strecam. Instead, cach block of crypto bit
stream is gencrated using a unique 1V, Each 1V is formed by concatenating a bit
stream 1D and a counter that is incremented cach time the algorithm is exccuted.
The bit stream D distinguishes cryptographic bit streams generated under the same
key. This stream cipher mode cxhibits several very important properties. For
example, n cryptographic devices can be used in parallel to generate a single bit
stream by initializing the counters (o the values 7 through n and incrementing by n
cach time (using the same bit strcam 1D for all). This makes the output appear as
though it came from a single, fast cryptographic device and allows using different
crypto device configurations at cach end of a connection, e.g, units of differing
speeds or different numbers of units to generate the same bit stream. Moreover,
since no feedback is employed, crypto bit stream blocks can be generated at the
maximum rate for crypto devices that allow loading the next input while the

algorithm is being executed (a common design feature in many DES chips).

For securing bus transactions, cach TRM generates two distinct bit streams for
cach device with which it communicates: a transmission bit stream and a reception
bit stream. Thus, for each connection, one crypto bit stream is used to encipher bus
operations transmitted by the TRM and another bit stream is used to decipher bus
operations that the TRM receives. (Of course these terms are relative since a
transmission bit stream at one TRM is a reception bit stream at the TRM that is the
target of the bus operation.) In communications parlance a different crypto bit
stream is associated with cach independent simplex channel. The endpoints of each

conncection generate the two bit streams for that connection in synchrony so that [Vs

need not be transmitted and so that the receiver of an operation can precompute the

An Encrypted Bus Approach

it strcam needed o decipher the incoming operation. The use of a different bit
stream for cach channel is important. I the same bit stream were employed for
more than one simplex channel, it would be necessary to impose additional
constraints to prevent two TRMs from transmitting data enciphered under the same

bit stream.

This stream cipher mode permits encryption and decryption of bus operations
with almost no delay, assuming a sufficient number of cryptographic chips are
cmployed in parallel. However, this strecam mode does not provide any error
propagation for authenticity and integrity checks and thus a cryptographic crror
detection code (CEDC) must be employed for that purpose. Using a CEDC, the
aeneration of erypto bit stream for encrypting and decrypting data is independent of
the CEDC caleulation. Thus one DES chip can be dedicated to calculating the
CEDC and crypto bit strecam generation can proceed in parallel using other DES

chips.

Since stream mode encryption and decryption can take place with no appreciable
delay and can keep pace with any transmisston rate (using multiple units in parallel),
the transaction time for a simple secure read based on this design exceeds the time
for a standard read only by the amount of time devoted to the CEDC generation and
checking. The simplest way to calculate a CEDC in this application is to encrypt the
data to be protected using ECB mode, and to transmit a portion of the resulting
ciphertext block. (It is not necessary to transmit the entire CEDC block since the
receiver of the data can perform the same calculation on the data and compare the
appropriate portion of the result to the received CEDC bits.)) I a full, 16-round
DES encryption is performed to calculate the CEDC, the delay introduced by this
operation is 7', no better than the delay provided by CFB mode. However this
dclay can be réduced by operating on the plaintext for less than the full 16 rounds

and by transmitting a portion of the result encrypted using stream mode. 1

116

An Encrypted Bus Approach

The idea is 1o reduce the time required for CEDC calculation but to maintain
security by using enough rounds and by stream encrypting the resulting CEDC.
After five rounds of the DES, every bit of the output is a complex, non-lincar
function of every bit of the input and of every bit of the key. The crror propagation
provided by five rounds of the DES makes it impossible to chunge data in a fashion
that is ivariant under this CEDC. Also, if the CEDC is stream mode encrypted
before transmission, the intruder cannot discover the value of a CEDC except
through cryptanalysis of the full 1l6-round DES. In order to tamper with data
covered by the CEDC (and not be detected), the intruder must cither be able to
predict the CEDC generated on a known input or be able to predict the changes in a
CEDC resulting from complementing a bit in a known or unknown input. Because
all of the key bits are involved in determining the value of cach output bit, cach of
these tasks is probably cquivalent to breaking a five-round DES, i.e., discovering the
key. As there is no indication that a five round DES can be broken by other than a
brute force attack, and since the matching ciphertext required for such an attack is
itself encrypted under a {ull strength DES, there is good reason to believe than an
intruder cannot subvert this CEDC scheme.

Figure 3-4 illustrates the steps involved in a simple secure read employing the
strecam mode enciphering/deciphering and the CEDC scheme described above.
The master begins by gencrating its transmission crypto bit stream (C1) using the
stream cipher procedure described above. The address in a PRESENT-ADDRESS
is enciphered using 32 bits of that bit stream (X1) and the result is transmitted (T1).
The address is deciphered at the slave (X2) using the corresponding portion of the
slave reception bit strcam (C2). The address is used to retrieve a word from memory
(A). The slave generates its transmission crypto bit stream (C3), enciphers the
retricved data (X3) using 32 bits of this bit strecam and transmits the result in a
PRESENT-DATA (T2). The master deciphers this operation (X4) using the

corresponding portion of its reception bit stream (C4).

117

-- I
An Encrypted Bus Approach

address data confirm

Master
Bus

Slave

Figure 3-4: Event Graph for a simple secure read

While steps X3, 72 and X4 are taking place, the slave can calculate the CEDC
(E1), using both the address and data as input. Once the CEDC is available, a
portion of it is encrypted (X5), using more of its transmission bit strecam from C3,
and the result is transmitted to the master (T3). At the master, once the data is
decrypted (X4) using corresponding master reception bit stream from 4, it is
concatenated with the address to calculate the CEDC (E2). When the CEDC
calculated at the slave arrives and is decrypted (X6), it is compared (=) with the
corresponding portion of the CEDC calculated at the master to verify the
authenticity, integrity and ordering of the transaction. The decryption of the slave
CEDC (X6) and the comparison (=) can be re-ordered and re-associated (the
master CEDC can be added to the appropriate crypto bit stream and the result

118

T

An Encrypted Bus Approach

compared to the incoming, encrypied slive CEDC) if performance is improved by

this alternative ordering of steps.

Since master and slave gencrate different transmission bit streams, neither will
transmit data enciphered under the same bit stream that the other is using to
encipher data, regardless of attacks, and thus concealment is ensured. 1f the data in
the PRESENT-DATA is modified or if the data is not from the requested location,
this will be detected since the CEDC is a function of both. The timeliness of the
transaction also is assured by the use of different crypto bit stream for cach bus
operation and by the CEDC. An old transaction will be improperly decrynted
because of the uniqueness of the crypto bit stream and this will result in a mismatch
in the CEDC check. The intruder cannot compensate for the differences in the
crypto bit stream unless he can calculate CEDCs, a feat made impractical by the
scheme used here. Thus this design achieves all of the security requirements

established for simple read transactions at the beginning of this section.

The minimum transaction time for this simple secure read is 2T1 + Td + Te &
bus cycles) as derived from the timing diagram in Figure 3-5. However, the data is
available at the master after 2T1 -+ Ta, the same as for a standard read. Thus
unvcerificd data is available at the master with no additional delay from the
beginning of the transaction, but total transaction time incrcases by 66%. A
processor employing pipclining might be able to "backup” if data is discovered to
be invalid within two bus cycles after its delivery, but most systems will have to
abort and shut down under these circumstances. In many cases, it will not be
acceptable to deliver unverified data and the master will incur a 66% increase in
effective access time. This is clearly unacceptable for processor-memory
transactions. However, in a cache-equipped system, a secure extended read can be
implemented in a similar fashion and the cffective average memory access time for
verified data increases by only 4-9% in this case. This increase is small enough to be

acceptable in most applications. .

119

An Encrypted Bus /7 nproach

» - » O
200

Master

+moo>

o

M-crypto3
c4

M-crypto2
(03]

M-crypto1
T1 T2 T3

Bus
C2

S-cryptot

S-crypto2
Et

S-crypto3d

Slave

01234567890

Figure 3-5: Timing Diagram for a simple secure read

Delay in dclivery of data is not the only concern here. For processor-memory
transactions the maximum standard transaction rate should be attainable and bus

utilization should not increase significantly. The effective memory access time

calculations performed above assume that successive simple secure read transactions
can be issued at the samc maximum rate as standard read transactions. Unless the
next transaction is allowed to begin before the CEDC of the preceding transaction is

transimitted, this maximum rate cannot be achicved. Thus, for processor-memory

120

o

An Encrypied Bus Approach

transactions, CEDC transmission must be interleaved with address and data
transmission. One might attempt to transmit the CEDC on the A/DO-31 fines
during the idle cycle in the middle of simple secure read and simple secure write
transactions (sce Figures 3-5 and 3-8). However, this idle cycle will not always occur
at the tme when the CEDC should be transmitted. Moveover, the sccure versions

of extended transactions do not provide such idle cycles.

This analysis suggests that a separate set of bus lines is required to support
interleaving of CEDC transmissions for processor-memory transactions. Sixteen
additional hnes (CEDCG-15 should suffice for most applications since, if 16 CEDC
bits are transmitted for ecach transaction, an attacker has a 210 chance of
undetectably tampering with a transaction. These bus enhancements (extra lines for
CEDC uansmission and interleaving of this transmission) are required only for
processor-memory transactions, so they affect only SYSTEM € and SYSTEM D,
where the bus segment between the processor and primary memory is unprotected.
These enhancements are most casily and economically impiemented in a dual bus
system configuration, where the existence of only a single bus master makes
interleaving feasible and equipment cost is minimized since only two bus interfaces
are mvolved. Thus SYSTEM D is strongly preferred over SYSTEM C. In
SYSTEM A and SYSTEM B the simple transactions on the exposed bus segment
are strictly control transactions and the increased delay due to CEDC transmission
on the A/DO-31 lines on this segment should not pose a significant performance

problem.

For processor-memory transactions, the CBls at primary memory and on the
memory bus connection to the bus coupler cach require four cryptographic devices
to maintain the maximum transaction rate. Figure 3-6 shows the utilization of the
cryptographic devices, memory and bus lines for a series of six successive simple

secure read transactions. In each three-cycle transaction, 32 bits of address must be

121

An knerypred Bus Approach

concealed by the master so a single device (eryptol) can supply the needed 64 bits
every sia cycles. The slave must conceal 32 bits of data and 16 bits of CEDC cvery
wransaction, for a total of 48 bits every three ¢ycles (at maximum rate). Two
cryplographic devices (crvpro2 and cripro3) are used for this task since a single
device can gencrate only 64 bits every five cycles. Finally, one crypto device
(crypto?) 1s required 1o generate the CEDCs, using two bus cycles in cach three-
cycle transaction to perform five of the 16 rounds of the DES. Since this string of
transactions represents a series of processor-memory transactions, the extra bus lines

(CEDCO-15) are employed for CEDC transmission.

If the traffic analysis threat is ignored, addresses need not be encrypted and 32
fewer bits would have to be concealed on cach transaction. In this case only three
crypto units are required at the processor and primary memory, i.e., cryptol can be
climinated. Even if addresses in processor-memory transuctions are concealed, it is
quite likely that address concealiment may be omitted for control transactions (those
involving the processor and DMA peripherals) since the device register addresses in
these transactions provide very little information to an attacker. Unlike processor-
memory transactions, the frequency of control transactions is fairly low and there
should be enough time between these transactions to allow a single crypto device to
precompute crypto bit stream between uscs (whether or not addresses arc concealed
in these transactions). This would free this device for CEDC calculation during
these transactions. Thus TRM-packaged peripherals probably require only one
crypto unit (changing bit stream IDs as required) for simple secure read control

transactions.

3.3.2 Securing simple write Transactions

The detailed security requirements for simple write transactions provide no

opportunities for relaxation, unlike simple read transactions. The contents of the

122

1 K PP,

An Encrypted Bus Approach

A DA CDA CDA CDA CDA c D %
N D AD OAD OAD OAC OAD O A 0
; 0 10 NTOD NMTD NTD NTD N T N
i R AR F AR F AR F AR F AR F A F
{
: Master + P O G G G G A
P2 ES E? F? £2 £2
iM-cryptod
C4 Ca C4
M-crypto3 —-
C4 C4 cé
M-crypto2
C1 C1
M-cryptot -
o T T2{T1 12T 1211 12171 1271 12
A/DO-31 —T
T3 13 T3 T3 13 T3
CEDCO-15
c2 C2
S-cryptoi
c3 c3 c3
S-crypto2
C3 Cc3 c3
S-crypto3
E1 1 E1 Ci E1 E1
S-ciyptod
. A A A A LA A
Slave - (

01234567890123456789012345

Figure 3-6: Timing Diagram for Successive simple secure read Transactions

An Encrypted Bus Approach

PRESENT-ADDRESS and PRESENT-DATA must be conceuled. The slave must
verily that these operations are ordered with respect to other transactions on the
connection. and that the address and date are authentic and unmodificd. The siave

must provide the master with a sccure ACKNOWLEDGE verifying the successful

completion of the simple secure write. These requirements can be achieved using
many of the same technigues developed for secure reads. Stream mode encryption
and decryption are employed for concealment and the same CEDC technique is
applicable here to ensure the authenticity, integrity and ordering for cuch operation
tn the transaction. Figure 3-7 shows the event graph for the simple secure write

resulting from an application of these techniques.

address data ack

Bus

Slave

Figure 3-7: Event Graph for a simple sccure write

124

An Encrypted Bus Approach

ity

The master begins by generating 64 bits of transmission bit stream (C1) for
concealing address anc data. The address is encrypted (N1) using half of these bits
and the result is transnntted (T1) using a PRESENT-ADDRESS. The slave receives

this encrypted address and decrypts it (X3) using the corresponding portion of the

slave reception bit stream generated in C2. Back at the master, the data is encrypted
(X2) using the remaining 32 bits from the transmission bit stream generated in step
Cl1. The result is transmitted (12) using a PRESENT-DATA and deciphered at the
slave (X4). At the master, the address and data are used to calculate a 64-bit CEDC
(E1), a portion of which (say 16 bits) is encrypted (X5) using a matching amount of
additional transmission bit stream generated in C3. This CEDC is transmitted to the
slave (T3) where it is deciphered (X6) using the corresponding reception bit strcam

generated in C4.

The slave computes a 64-bit CEDC using the reccived address and data, and the
corresponding bits of this CEDC are compared with the CEDC bits from the master
(=1). Ifthese bits match, the write, which was begun earlier when both the address
and data became available, is completed and acknowledged. The
ACKNOWLEDGE is secured by encrypting (X7) and transmitting (T4) a different
portion of CEDC gencrated in step £2. This CEDC is encrypted using slave
transmission bit stream generated in C5, The master verifies the completion of the
transaction by decrypting (X8) this portion of the CEDC, using the master reception
bit stream from C6, and comparing (=2) it with the corresponding, locally
gencrated CEDC bits from step E/. As in the secure read transaction, the steps
involved in an CEDC comparison can be re-ordered and re-associated, if necessary,
to provide faster operation. This re-ordering and re-association may be especially
critical at the slave if the CEDC is to be checked and a secure ACKNOWLEDGE
transmitted on the next bus cycle. This transaction offers a number of opportunities

for parallelism, as illustrated in Figure 3-8.

125

e

An Encrypted Bus Approach

- N O O >
- » = » O
>

Et

M-crypto4

|
Master J{ %ﬁ
| |
|

M-crypto3d

C3

M-crypto2
Ci

M-crypto1

Bus

c2

S-crypto1

S-crypto2
cs

S-crypto3
E2

S-cryptod4

Slave

01234567890

Figure 3-8: Timing Diagram for a simple secure write

Total time for this simple secure write is 37 + T (5 bus cycles), based in the

{ e
timing diagram in Figure 3-8, the same as {or a simple secure read. (An examination
of the event graph yields a complex symbolic timing formula, involving nested

minimum functions, which simplifies to this expression using the relative timing

126

An Encrypted Bus Approach

assumptions adopted carlier) The address and data aee avaable wt the shnve wt the
sume points in time as inoa standard write, but confirmation of their validity s
delayed by two bus cycles, causing an equal dely in acknowledgment ol the
transaction. Again the seeure version of this transaction takes 66% longer than the
standard version, As anincrease in effective memory access time. this delay is not
quite so serious as in the case of a simple secure read since write transactions
typically constitute only about 20%-25% of all processor references to memory.
Moreover, in systems equipped with a write-through cache, processor-generated
write transactions may be buffered to reduce the delay associated with access to
primary memary. (IFa write-back cache i1s employed, buffering of modificd, evicted

fines reduces delay on extended write transactions, [0])

Since a simple secure write takes 66% longer than a standard write, a proportional
increase in buffering at the cache will maintain existing performance levels in the
face of this additional delay. (A secure extended write exhibits the same relative
increase in delay.) For cacheless systems, singic or double buffering of writes will
absorb this delay in most cases. Although additional buffering can reduce the effect
of the longer transaction time on effective memory aceess time for the processor, the
transmission of CEDCs during two bus cycles increases bus utilization and thus may
delay other transactions, As with simple secure read transactions, the problem can
be solved by overlapping transmission of CEDCs with address and data
transmission (using additional bus lines for this purpose). Use of the extra bus lines
and this imited transaction interleaving enables simple secure write transactions to
proceed at the same maximum rate as standard write transactions. Again these bus
cnthancements are required only for processor-memory transactions and thus affect

only SYSTEN € and SYSTEM D, Using the same reasoning applied to simple

secure read transactions, it is apparent that SYSTEM D is preferved here.

An Encrypted Bus Approach

A D A D A D AD A D A D
D A DAADAADAADAATDAA A
DT DTCDTCDLDTCDTCDTGC c
R A RAKRAKRAKR RAIKTERAK K
H |
Master S S, -—rk——-. l— lt—i—*b—cL—l'J? lu‘l‘l—l‘ u"“ '—‘4—
)] E1 1 £1 E1 E1
M-cryplo4d - --
c3 C6 ca
M crypto3
(@3] (03] C1
M-crypto2
ol C1 C
M-cryptoi —'r
) T2 T1|12 T2 Ti[12 T1(T12 T1{12
A/DO-31]
_ T3 (T4 T3 |¥4 13(T4 T3 |74 T3 (T4 T3|T4
CLEDCO-15
c2 Cc2 c2
S-ciyptot
c2 Cc2 c2
S-crypto2
c4 cs ca
S-crypto3
E2 E2 E2 E2 K2 K2
S-cryptod
A A A A A A

Slave

01234567890123456789012345

Figure 3-9: Timing Diagram for Successive simple secure write Transactions

128

An Encrypted Bus Approach

3 For processor-memory transactions, the CBls at pnmary memory and the
i menmory bus connection to the bus coupler each require four cryptographic devices
to maintain the maximum transaction rate, the same number as for a simple secure
read transaction. Figure 3-9 shows the utilization of memory, bus lines and
cryptographic devices for six successive simple secure write transactions. The master
L must conceal 64 bits of address and data and 16 bits of CEDC for cach transaction,

whereas the slave must conceal only 16 bits of CEDC. Three crypto devices

(cryptol, crypio2 and cryptod) arc devoted to gencrating bit stream here, with
cryptod alternating between transmission and reception bit stream generation. (One |
could make the assigniment of crypto devices to bit stream generation tasks simpler
by devoting a device exclusively 1o the slave transmission bit stream, but this would
leave two devices idle much of the time.) Again, one cryptographic device (cryprod)
is required to calculate CEDCs and these CEDCs are transmitted on the extra bus
lines EDCO-15.

As was the case with simple secure read transactions, if addresses need not be
conccaled then one crypto device can be climinated. Again, even if addresses are 1
conccaled on processor-memory transactions, it scems likely that addresses in
control transactions nced not be encrypted. Here too, the frequency of simple
secure write transactions used to control DMA devices should be low enough to
allow a single crypto device to gencerate the transmission and reception bit streams
between these transactions, freeing the device to generate the CEDC during the
transaction. Thus TRM-packaged peripherals probably require only a single crypto

device to keep pace with simple sccure write control transactions.

3.3.3 Securing interrupt Transactions

L Only one type of simple transaction has yet to be discussed: an interrupt. The

security requirements for an interrupt arc much like those of a simple write, offering

129

An Encrypted Bus Approach

no opportumty for relaxation. The interrupt vector in the the PRESENT-DATA
must be concealed, and the processor must \’Cl‘ify that this operation is properly
ordered, authentic and unmodified. The peripheral gencrating the interrupt must
verify that the A\CKNOWLEDGE it receives corresponds to the PRESENT-DATA
just transmitted. These requirements are readily achieved using the techniques
developed above for simple read and simple write transactions. Figure 3-10 shows

the event graph for a secure interrupt.

Master

Bus

Slave

Figure 3-10: Event Graph for a secure interrupt

The master begins by gencrating transmission crypto bit stream to conceal the
intcrrupt vector and CEDC (C1). The interrupt vector is enciphered (X1) and
transmitted in a PRESENT-DATA. This vector is input to the CEDC calculation

130

ack

P e

An Encrypted Bus Approach

x O »

m"—<-42—
f_-.

Master

M-crypto3

M-crypto2

M-crypto1

Bus

ce?

S-cryptol 0

S-crypto2
£2

S-crypto3

Slave

012345678920

Figure 3-11: Timing Diagram for a secure interrupt

(E1) and 16 bits of the result are enciphered (X3) and transmitted (12). At the slave i
(processor) the interrupt vector and the CEDC are deciphered (X2 and X4) using {
the corresponding slave reception bit stream from C2. A CEDC is calculated locally
on the vector (E2) and the corresponding 16 bits are compared with the transmitted
CEDC (=1). If the two values match, the interrupt is processed (P) and
acknowledged. The acknowledgment is effected by enciphering another 16 bits of

the CEDC (X5) using slave transmission bit stream (C3), and transmitting the result

131

An Encrypted Bus Approach

as an ACKNOWLEDGE (T13). The master deciphers the CEDC (X6) using
corresponding master reception bit stream from €4, and compares it with the

corresponding bits of the CEDC gencrated locally (=2).

The minimum total ime for this transaction is 2T’ + Tc (4 bus cycles), based on
the timing diagram in Figure 3-11. This is twice as fong as a standard interrupt, but
since these transactions occur so infrequently (they are strictly control transactions),
the added delay and extra bus utilization should not significantly affect system
performance. 'The relative infrequency of interrupt transactions, like other control
transactions, means that a single crypto probably suffices to generate both erypto bit
streams and to perform the CEDC calcutation. Thus the CBIs for peripheral devices

need only one crypto device to handle secure control transactions.

3.4 Securing Aggregate Transactions

This section deals with the problem of securing aggregate transfers. If the simple
secure transactions developed in the preceding section were employed for aggregate
transfers without interfeaving CEDC transmissions (including additional bus lines),
utilization of the genceral purpose or 1/0 bus for these transfers would increase by
66%. 1f utilization of this bus is very low, this may be acceptable, but in most cases
this increase will noticeably degrade system performance. Adopting interleaving
and adding extra bus lines to carry CEDCs, as was done for simple secure
transactions, is an expensive proposition in this context. This is due to the number
of devices attached to this bus and to the fact that this bus is not synchronous,
making interleaving more complex. The transactions developed in this section avoid
this problem, i.c., they do not significantly increase bus utilization, yet they provide

for secure transfers of aggregates between DMA devices and primary memory.

132

An Encrypied Bus Approach

3.4.1 A Transfer Protocol for Data Aggregates

The transfer protocol developed here takes advantage of the fact that transfers
between primary memory and these storage devices involve data aggregates larger
than a word, e.g., a disk block or a tape record. Rather than checking the validity of
cach word as it is transferred, the authenticity, integrity and ordering of the
aggregate transfer as a whole is checked after the transfer is complete. In this
fashion the data and address in cach read or write transaction in an aggregate
transfer is encrypted, but the transaction carries no CEDC and thus bus utilization is
not affected. Only when the transfer is complete is a cumulative CEDC, covering all
of the transferred data and addresses, transmitted for verification, This CEDC
transmission is effected using a simple secure read as developed in the preceding

section.

It might seem that this approach would result in reduced security but a careful
examination of the protocol indicates that it presents an intruder with no new
opportunities for attacks. When a data aggregate is transferred to primary memory
from a storage device, the processor does not access any portion of the aggregate
until the storage device signals that the transfer is complete and verified. As long as
the unvenified data is stored only in the locations that are destined to be overwritten
anyway, no real harm results from transferring data aggregates in this fashion.
Address filtering of these unverified writes at the slave, restricting them to the
region(s) of primary memory which are current targets of such transfers, provides
the necessary control. Note that the term slave is used here (rather than primary
memory) since the filtering and other security functions can be performed at various
points depending on system configuration, In SYSTEM A und SYSTEM B these
functions arc provided by the CBIin th= main 'TRM and in SYSTEM D cither the

primary memory CBI or the bus coupler CBI (at the 170 bus interface) could

perform these tasks.

An Encrypted Bus Approach

In transterring data aggregates from primary memory 1o storage devices a similar
argument applies. Some storage devices buffer the aggregate until the transfer is
complete, sinee the rate of arrival of words varies depending on bus traffic and may
not be synchronized to the device transfor rate. In this case the aggregate can be
checked before it is written on the non-volatile media. Even if the data is written on
the media before the transfer is complete (as in a non-buffered device). no harm will
result so long as it s possibie o identify unverified aggregates on the media.
Incomplete transfers to these devices sometimes occur under normal (non-
malictous) circumstances due to transmission timing problems. Storage devices
(buffered and non-buffered) record an EDC with cach aggregate to detect these and
other errors, F an incomplete trensler occurs or an ¢rror is detected by the
cumulative CEDC, the EDC on the media can be set to an error value as a positive
mdication of unverified data, Since storage devices act as bus masters, there is no

need for address filtering here, unlike primary memory.

Thus aggregate transfers to and from primary memory are efficiently and securely
implemented using two types of transactions: simple secure transactions to control
the transfer, and aggregate sceure transactions to transter the data. The general
procedure, for transfers in both directions, is as follows. First, if the transfer is
dirccted to primary memory, the processor identifies the range of the transfer at the
slave, e, establishes the upper and lower bounds for primary memory references,
and resets the stave cumulative CEDC register. Next, the processor cstablishes the
transfer parameters at the storage device, e.g., the starting addresses at source and
destination and the amount of data to be transferred, using simple secure control
transactions. 'The storage device then carries out the transfer using aggregate secure

transactions,

As cach word is transferred, the cumulative CEDC s accumulated at both the

storage device and at the slave. When the transfer is complete, the storage device

134

An Encrypted Bus Approach

reads the slave control register containing the accumulated CEDC (using a simple
secure read). In the case of a transfer to memory, this control transaction must set a
flag at the slave to prevent further data transfers on this connection until the CEDC
register s reset for the next transfer. This value is compared to the CEDC
accumulated at the storage device, and the status register at the storage device is set
accordingly. (The EDC on the non-volatile media is voided if the comparison fails
or if an incomplete transfer error occurs.) The storage device sends a secure
interrupt to the processor when this procedure is complete and the processor

retrieves the contents of the device status register using a simple secure read.

Readers who are not interested in the details of sccuring aggregate transfers
should now skip to section 3.7 (page 154) for a summary of the highlights and a

review of the conclusions reached in this chapter.

3.4.2 Securing aggregate read and aggregate write Transactions

The event graphs and timing diagrams for an aggregate secure read and an
aggregate secure write are shown in Figures 3-12, 3-13, 3-14, and 3-15. The
cncryption/decryption mode and cryptographic error detection techniques
cmployed here are essentially the same as those used in simple secure transactions,
The CEDC calculation must be made cumulative in a fashion that not only detects
modification of individual words but also detects positional changes (reordering) of
wurds in the data aggregate. The method adopted here is to chain the CEDC
ca'culations by adding the output of the ™ CEDC calculation to the input of the
i+ 1*" CEDC calculation. This is essentially CBC mode encryption (using a
shortened DES) applied to the CEDCs.

In an aggregate sccure read, the master begins by gencrating transmission

cryptographic bit stream (C1) in the usual fashion. The address in the PRESENT-

An Encrypted Bus Approach

address data

Bus

Slave

Figure 3-12: Event Graph for an aggregate secure read

ADDRESS is enciphered using 32 bits of that bit stream (X 1) and transmitted (T1).
The slave deciphers the address (X2) using a cofrcsponding portion of the slave !
reception bit stream generated in C2. The appropriate word is retricved (A), ‘
enciphered (X2) using 32 bits of slave transmission bit stream (C3), and transmitted
(T2) in a PRESENT-DATA. The data is also added to the cumulative CEDC (X4)
and a new running CEDC is calculated on the result (E1). At the master, the data is
deciphered (X5) using corresponding bits from the master reception bit stream (C4),
and is made available both for storage and for calculation of a new cumulative

CEDC value (X6 and E2). Figure 3-12 illustrates these processing steps.

An aggregate secure write proceeds in much the same fashion, The address in the
PRESENT-ADDRESS and the data in the PRESENT-DATA are enciphered (X1 '

136

An Encrypted Bus Approach

A
D
D
R

Master

m$—>—c>o

2

M-crypto3d

C4

M-crypto2
Ct

M-crypto1

T T2

Bus
c2

S-cryptot

S-crypto2
El

S-crypto3

Slave

01234567890

Figure 3-13: Timing Diagram for an aggregate secure read

and X2), using 64 bits from the master transmission bit stream (C1), and transmitted
(T1 and T2). The data also is fed into the cumulative CEDC calculation (X4 and
F1). The slave deciphers the address and data (X3 and X5) using the slave reception
bit stream (C?), and transmits an unencrypted ACKNOWLEDGE (T3). The slave
checks the address against the range registers (<>) and, if it is within the prescribed
bounds, the data is stored and fed into the cumulative CEDC calculation (X6 and

E2). Figure 3-14 illustrates these processing steps.

137

An Encrypted Bus Approach

address data ack
. (c1)-
Master o/ _/

Bus

?

O
Siave &5

Figure 3-14: Event Graph for an aggregate secure write

The minimum time for both transactions is 2T + 7 (three bus cyclces), the same
as for comparable standard tr. ansactlons as mdlcatcd in Flguus 3-13 and 3-15. Note
that the CEDC calculation is performed on 64-bit inputs, so it is executed only once
for every two transactions. Since the maximum transfer rate for sccondary and T&A
storage devices ranges from about 1-15 Mbits/s, a single crypto unit probably
suffices to gencrate both the crypto bit stream and to calculate the cumulative
CEDC. As it was noted in scction 3.3 that a single crypto device is probably
sufficient to secure control transactions, this analysis suggests that the CBIs for
TRM-packaged sccondary and T&A storage require but one crypto device to handle

both types of transactions.

This aggregate secure transfer protocol requires an additional two to four control
transactions: onc to transfer the cumulative CEDC, one to resct the CEDC register

at the slave and, in the case of transfers to primary memory, two transactions to

138

An Enciypted Bus Approach

A D
D A A
DT C
R A K
Master H—
EY
M-crypto2
C1
M-crypto1
T1|T2]|T3
Bus
c2
S-cryptol
. €2
S-crypto2
A
Slave

“01234567890

Figure 3-15: Timing Diagram for an aggregate secure write

cstablish the bounds of the transfer. An aggregate transfer in a standard system
requires one transaction for every word transferred plus five control transactions (as
detailed carlier). Thus, in a typical 512-byte transfer, the additional bus cycles
required by extra control transactions to sccure the transfer constitute a negligible
(1.5-3%) increase in bus utilization for DMA transfers. Moreover, the total time for

such transiers is not noticcably increased (<1%) since the extra control transactions

require only a few microscconds whercas a 512-byte transfer takes on the order of

500us at 8 Mbits/s.

An kncrypted Bus Approach

3.5 Additional CBI Design Considerations

The cryptographic techniques employed for aggregate secure and simple secure
transactions emiploy a different bit stream 1D for each simplex channel, ensuring
that the gencerated bit streams are distinct. In a computer systcm consisting of n
'RM-packaged (DMA) storage devices, there are logically 2n connections: one
between cach of these devices and the processor (for control purposes) and one
between cach of these devices and primary memory (for data transfer). This yiclds
4n bit strcams, two for cach connection! However, it is possibie to combine the
control connection and the data transfer connection for ¢ach DMA peripheral
device into a single connection if both connections are managed by a single CBI at
cach end (to synchronize use of the bit streams). Combining these connection pairs
halves the number of distinct bit streams that must be generated, making the CBIs at

these devices somewhat simpler and less costly.

Combining the control and transfer connections for cach device fits naturally in
SYSTEM A and SYSTEM B where the CBI on the main TRM provides the only
path to both processor and primary memory for storage devices. In SYSTEM C this
simplification cannot be cffected since the CBls for primary memory and the
processor are distinct in this configuration. However, SYSTEM C cffectively was
climinated from consideration earlier because of the cost of interleaving CEDC
transmission for processor-memory transactions. In SYSTEM D, the CBI at the
interface to the 170 bus can act as the secure interface to both processor and
primary memory for these storage devices in support of combined control/transfer
connections. This approach yields single-connection CBls for secure storage
devices, primary memory and the bus coupler interface to the memory bus. Only
one multi-connection CBI is needed in these designs, the CBI at the bus coupler

interface to the 170 bus.

140

An Encrypted Bus Approach

[rrespective of the choice of combined or separate control and data connections,
the above-noted design for SYSTEM D is preferred over one in which the primary
memory CBI is the termination point for the storage device data transfer
connections. The reasoning here is that the primary memory CBI is fairly complex
due to the high transaction rate which it must support. If this CBI had to deal with
aggregale transactions from several storage devices and simple transactions fiom the
processor, the bus interface would become even more complex. Thus the preferred
design for SYSTEM D involves terminating each storage device data transfer
connection at the main TRM. Adopting this design, the bus coupler CBI at the 170
bus interface becomes the slave CB1 in aggregate transfers, and thus it contains the
CEDC accumulation register and a pair of bounds registers 1o restrict access on
aggregate secure write transactions. Note that these registers are associated with
only one transfer at a time so scveral sets of registers are required to support
multiple, simultancous aggregate transfers.

This is a convenient arrangement since the processor control transactions that
manipulate the bounds registers (to establish the range of transfers) do not actually
go out on the bus and thus need not be encrypted. Under this arrangement,
aggregate transactions are managed at the bus coupler and transformed into simple
secure transactions on the memory bus, thus simplifying the primary memory CBI.
(In cache-equipped systems configured as SYSTEM D, aggregate transfers may
store into or fetch from the cache, so these transactions must be decrypted and
processed at the bus coupler anyway.) Since the cumulative CEDC detects
modification only between the master CBI and the slave CBI, i.e., only on the 170
bus in this design, it is essential that simple secure transactions are used to transport

this data on the memory bus.

Using this design, the transfer of a data aggregate between a secure storage device
and primary memory involves three distinct phases: transfer on the 1/0 bus using

aggregate secure transactions, buffering in the bus coupler and transfer on the

141

An Encrypted Bus Approach

memory bus using simple secure transactions. On tansfers to memory from the 170
bus, a small (two or three word) buafler is usually provided to account for the
asy nchronous operation of the two busses. 1 such a buffer were not provided, the
time for a store to memory from a device on the 170 bus could double or triple
waiting for the memory bus to become available and for an acknowledgment from
memery. In the context of an aggregate secure write to memory, if this buffer is
expanded by one word, the (non-secure) ACKNOWLEDGE on the 170 bus can be
isstied before the simple secure write is completed on the wmemory bus, ic., the

transactions on the two busses can be overlapped.

On transfers from memory to devices on the 170 bus, data is usually pre-fetched
from memory into small (one or two word) buffers, one per DMA device. If this
pre-fetching were not provided, the time for a feteh from memory by a device on
the 170 bus could double or triple, just as for stores by these devices. In the case of
an aggregate secure read, the size of these buffers need not be increased, cven
though a simple secure read encounters a two-cycle delay before the authenticity,
integrity and timeliness of the transmitted data is verified. Instead, the prefetch can
begin two cycles earlier than in a standard system so that the requested word is
available and checked before the aggregate transaction takes place. If the same
prefetch time were employed, the data from primary memory might not be checked
before it was transmitted on the 170 bus and thus the entire transfer would have to
be aborted if the check on the word failed. Earlier prefetching is readily
accomplished by the bus coupler given the relatively low transfer rates of storage
devices on the 170 bus. To avoid pre-fetching past the end of the data to be
transferred, one can usc the bounds registers provided for aggregate secure write

transactions to delimit the range of the transfer on aggregate secure read

transactions.

An Encrypted Bus Approach

One final design requirement that arises in ali system configurations is the need
for CBIs on the general purpose or 1/0 bus to be able to determine when
transuctions are directed toward them. This is a problem here because all addresses
in sccurc transactions are encrypted and can only be decrypted using the proper
crypto bit'stream. (Of course, if the system designer clects not to encrypt addresses
this problem vanishes.) It is conceivable that a CBl attempting to decrypt an
address using the wrong crypto bit stream will yield a value that matches an address
at the CBI. The multi-connection CBI at the bus coupler would be further
complicated if it had to check the address in cach transaction to determine the
connection with which it was associated. There are dual problems here: secure
storage device CBIs need to know whether they are the rarger of a transaction
whereas, (he main TRM CBI (on the 170 or general purpose bus) needs to know the
source of a transaction. Note that the problem is symmetric but not identical for the
main TRM and for storage devices. Based on the data flow patterns encountered in
these systems, if the main TRM is not the source of a transaction it must be the
target, and if a device is the target, then the main TRM must be the source.

If the arbitration procedure on the 170 or general purpose bus explicitly
identifies the next transmitter (the next source), then the second problem is solved,
i.e., the source of each transaction is identified for the main TRM CBI. Morcover,
using this information, the storage device CBls know they are not the target of a
transaction if the source is not the main TRM. The only remaining problem is
identifying the target of control transactions issued by the TRM. If the addresses in
these control transactions are not encrypted, the target is clearly identified and no
confusion results. In most applications, this will not be regarded as a serious breach
of security, as noted carlier, since only the addresses of control registers are involved
and these provide little traffic analysis information. [the arbitration procedure
does not identify the next transmitter, the CBIs on the 170 bus can generate this

information and transmit it using some additional bus lines. About two or three

additional bus lines should suffice for this purpose.

143

r——ms-u—-—w—-——-———ﬁ

An Encrypted Bus Approach

3.6 System integration Issues

The preceding sections dealt with the problems of securing communication
involving the processor, primary memory and sccondary and T&A storage devices.
Although these problems are central o the design of computer systems that achieve
the security requirements outlined in section 3.2, some additional problems must be
be addressed 1o complete the design. For example, there also has been no
discusston of how to interface non-secure devices to the 170 bus so that they can
communicaie with the processor and, in the case of DMA devices, with primary
memory. System initialization procedures, responses 10 possible sccurity violations
and enforcing reloading constraints associated with archival storage are all topics
requiring further attention. ‘The remainder of this chapter deals with cach of these

lopics in turn.

3.6.1 Interfacing Non-Secure Devices on the |/0 Bus

The non-secure devices attached to the general purpose or 170 bus fall into two
classes: interrupt driven and DMA. Interrupt driven devices interface only with the
processor, gencrating interrupt transactions and acting as the target of read and write
transactions to device control registers. DMA dcvices exhibit the same processor
mntertace requirements and further require a means of transferring data aggregates
to and from primary memory. Sccure and non-sccure devices must co-exist on the
general purpose or /O bus without cither being confused by the addresses
transmitted by the other. In solving these interface problems it is most desirable to
avoid approaches that entail modifying the bus interfaces for non-secure devices.
This is an important consideration since there may be a number of these devices on
the 170 bus, and system cost might increase significantly if off-the-shelf versions of

these devices cannot be employed.

144

Ntk e

A DUt e Y. NP NI 1 -

An Encrypted Bus Approach

First consider the problem of transmitting both encry pted and clear addresses on
the general purpose or 1/0 bus. Since the bit pattern that results from encrypting
an address is unpredictable, it is conceivable that some encrypted addresses will
match the bus addresses of non-secure devices and, conversely, that ¢lear addresses
could be decrypted by sccure devices to yield spurious bus addresses. In section 3.5,
two solutions were presented for resolving an analogous problem resulting from the
ambiguitics presented by encrypted addresses used on different connections, One
solution, the use of extra 170 bus lines 10 identify the transmitter and destination of
bus transactions would solve the current problem as well, but this would violate the
goal of not maodifying the bus interfaces of non-secure devices. The other solution,
based on using clear addresses in control transactions and an arbitration scheme that
identifies the transmitter, also requires that bus mterfaces (other than the processor)
know not to perform address recognition except when the processor is the

transmitter.

To avoid any modification of non-sccure bus interfaces, the strategy proposed for
bus address assignments in the monolithic TRM design is adopted here. ihe high
order bit of addresses will be used (o distinguish between secure and non-secure
device addresses and this bit will not be encrypted in any operations on the general
purpose or 170 bus. 'This bit partitions the bus address space between secure and
non-secure devices, so neither type of device will be confused and no modifications
to non-secure device bus interfaces are required. Since this address bit merely
identifies which type of device is being addressed, any traffic analysis information
glcaned from examination of this bit would be readily available in any case. Note
that this bus address assignment strategy does not interfere with use of ecither of the
previously mentioned solutions to the encrypted address ambiguity problem as it

exists among secure devices.

145

An kncrypted Bus Approach

Using this address assignment scheme, interfacing non-secure interrupt driven
devices becomes fairly simple. These devices generate standard interrupi
transactions and the processor controls the devices using standard read and standard
write transactions. The fact that the high order bus address bit distinguishes
between non-secure and sccure devices means that the processor implicitly indicates
to its CBI whether or not a transaction should be cncrypted. In the case of stores by
non-sccure DMA devices, there is a need for address filtering to restrict access to
designated memory locations. This is accomplished using pairs of bounds registers,
as proposed carlicr for the secure bus coupier (SBC) in the monolithic TRM design.
The processor must cstablish the range of memory locations to be accessed by non-
secure DMA devices and indicate the allowed modes of access (fetch and/or store)
before transfers can proceed. If an arbitration mechanism is employed that
identifies the transmitter, the appropriate pair of bounds registers is trivially
selected, otherwise an associative search (based on the address in the transaction)

may be required.

3.6.2 System Initialization

In the preceding sections, secure operation of the computer system has been
described in a steady-state context. When the computer system is powered up or
otherwise periodically initialized, it is necessary to cstablish the context for secure,
stcady-state operation. The purpose of this initialization procedure is the
establishment of secure connections between the main TRM and the other (slave)
TRMs in the system. The requirements for secure connection initiation‘hcre are the
same as in gencral purpose communication cnvironments, i.e., the authenticity and
the time-integrity of cach connection must be cstablished. The methods for
achieving these requirements are somewhat simpler here due to the fixed

conncctivity patterns of the TRMs and due to the fact that there is no mutual

146

An Encrypted Bus Approach

suspicion among the TRMs. The initialization procedure invohves distribution of a
working key by the main TRM followed by a challenge-response protocol o verify

the authenticity and ime-integrity of the connection.

Each slave TRM contains three non-volatile control registers for sccurity
purposes: one contains the master key of the TRM, one holds a bit pattern used in
the challenge-response protocol and one records the bit stream 1D pair used by the
TRM in communicating with the main TRM. One volatile register, to hold a
working key, is also included in cach slave TRM. The registers containing the
master key and the challenge-response value arc both loaded at the time of
manufacture, and the master-key register is never changed. However, the registers
containing the challenge value and the bit stream 1Ds are modified cach time the
TRM is reset (using the bus RESET line). The main TRM contains a collection of
non-volatile registers, including onc for its master key, a counter for gencrating
working keys and a set of registers to hold the master keys and bit stream 1Ds for the
slave TRMs configured in the system. The master keys of slave TRMs are loaded
into the main TRM using a procedure described in section 3.6.4. The main TRM
generates new working keys by incrementing its non-volatile counter and encrypting
(using ECB mode) the result under its master key, generating a distinct,

unpredictable working key each time. System initialization procecds as follows.

First, the main TRM generates a new working key as described above. Next, for
cach slave TRM in turn, the main TRM raises the RESET line while asserting the
bus address of the TRM being initialized, clearing all volatile registers in that slave
TRM. The main TRM then enciphers the working key under the slave TRM master
key (using ECB modc) and transmits the result to slave TRM control registers using
two standard write transactions, The slave TRM receives the working key, deciphers
it (using the slave TRM master key) and foads the result into its (volatile) working-

key register. Next, the master TRM uses a standard write to store the assigned bit

147

e p——— 1+

An tnerypted Bus Approach

strcam 1) pair to the slave TRM. The master TRM chooses these 1Ds so that each
stave TRM uses a different pair to communicate with the main TRM. The master
FRAL also stores these values (working key and bit strcam 1Ds) into the CBI

registers it assoctated with the slave TRM being initiahized.

Using its master key, the slave encrypts the contents of its challenge-value
register, viclding a new challenge value. The counter(s) used to generate crypto bit
stream are inmtialized appropriately, i.e., the counter for a single crypto device CBl is
set to [, and if n crypto devices are used, their counters are set to the values /
through n. The slave TRM then generates a secure interrupt, using the new working
key and the assigned bit stream 1Ds, indicating that it is prepared to carry out the
challenge-response protocol. The main TRM iesponds by reading the challenge-
value register and then writing back the value, using simple secure transactions, The
ability of the slave to generate a valid secure interrupt using the new working key
verifies the authenticity and time-integrity of the connection to the main TRM,
whercas the successful reading and writing of the challenge-value register does the
same for the slave TRM. When this procedure has been carried out for all slave

TRMs, the system is initialized for secure inter-TRM communication.

3.6.3 Response to Potential Security Violations

The CBIs and the TRM operating system detect poiential security violations in
two ways: through mismatches between calculated and received CEDCs and
through timeouts. Each time a violation is detected at the main TRM, a non-volatile
violation counter is incremented to record the occurrence. This type of threat
monitoring is used to detect attempts by an attacker to subvert the protection
mechanisms by repeated trials. A threshold is established by the vendor and, if that

threshold is exceeded, the processor will shut down (refuse to execute external

software for the client) until the vendor intervenes. This intervention may involve

An Enerypted Bus Approach

an inspection of the system by a representative of the vendor, or i may simply
require network communication so that the vendor s appraised of the repeated
crrors. The main TRM may be reset by engaging some form of dialogue with the

vendor, analogous 1o the system initiadization procedure described above.

Violations are detected at the bus master and at the stave, depending on the type
of transaction and the type of violation, The violatons may result from transmission

errors on the bus (accidentad or malicious), loss of cryptographic bit stream

synchrony between communicating CBIs or because of a transient or "hard™ device
malfunction. A simple parity cheek 1s used o deteet non-malicious crrors in data,

addresses or interrupt vectors on bus operations (bus lines PARTTYO-3), and it 1s

evpected that this code will catch most such crrors, Ha bus operation fails this non-
secure error detection code test, the operation s retransmitted automatically and the
violation counter s not incremented. (This operation retransmission uses a buffered
value of the operation and should not be confused with the ransaction retry
described below.) Only those "errors™ detected by the CEDC or by a timeout are
treated as attempted sceurity violations. "The appropriate response 10 a violation
depends on the type of violation, the type of transaction and whether the slave of

master detects the violation,

First consider CEDC mismatches. In the casc of a simple secure read, this type of
violation is detected at the master CBLE and the response is 1o attempt the transuction
again, treating it as a new transaction from the standpoint of the security measures.
Thus new cryptographic bit stream is generated for the retried transaction. In the |
case of a simple secure write or a secure interrupt, the violation is detected at the
slave and the response is Lo ignore the transaction, allowing the master to timeout
waiting for the ACKNOWLEDGE. For aggregate secure transfers (stores and
fetches), the DMA storage device determines if the cumulative CEDC check fails,

and the operating system discovers the violation when it fetches the control register

149

-l b .

TN b e g s o

An Encrypted Bus Approach

from this device. The operating system, upon detecting this condition, mcrements
the violation counter and may retry the aggregate transfer.
Next consider the response to timeouts. In the case of o simple secure read, a

timeout occurs at the master CBE when cither the data or the CEDC fails to arrive.

The response is to discard any cryptographic bit stream generated for this

transaction and retry the transaction, treating it as a new transaction. In the casc of a
simple secure write or a secure interrupt, a timeout can occur at either master or
slave CBI, e.g., while waiting for the CEDC or the ACKNOWLEDGE. If the slave
cxperiences the timeout, it ignores the transaction and discards any cryptographic
bit stream for the transaction. f no ACKNOWLEDGE is received, the master will
timeout, so all timecouts on these transactions are translated into timeouts at the
master. The master discards the cryptographic bit stream associated with this
transaction and retrigs it. In the case of aggregate transactions (fetches or stores),
timeouts are handled as above, noting that the cumulative CEDC is not updated on

the retry.

[f the retry fails in any of these cases. it is necessary for the operating system to
handle the situation. In the case of simple secure transactions, the processor is the
master and will detect the problem when the retry fuils. The processor readily
detects failed secure interrupt transactions as well. In the case of aggregate secure 3
transactions, the secure storage device will send a secure interrupt to the processor to
signal the error, Either way the operating system is easily notified of the problem.
The only recourse for the processor is to reset and reinitialize the device
(cstablishing a new bit stream 1D for the CBI) to rectify possible cryptographic bit
strcam synchrony problems or to detect an inoperative device (identified by its lack
of response to the initialization procedure). 1f this procedure succeeds it may be
possible to recover from the point at which the failurc occurred. (An aggregate
transfer would have to be retried in its entirety.) If the procedure fails it is time to

call the vendor.

150

An Encrypted Bus Approach

3.6.4 Distributing TRMs and External Software

TRM distribution arises in two contexts: distribution of external software by
TRM-packaged transfer storage and additions of TRM-packaged devices to systems,
The same hardware distribution procedure is employed in both contexts. The
vendor maintains a database that contains the serial number, master key, and initial
challenge-response value for cach TRM he has manufactured. Given the serial
number of a slave TRM to be added o a system and the serial number of the main
TRM for that system, the vendor can use this database to generate a bit string that is
entered into the main TRM of the system in question (via a terminal). This bit
string consists of the initial challenge-response value and the master key for the
slave TRM being sold, both encrypted under the master key of the main 'TRM
(using PCBC mode). When a client purchases a TRM-packaged device to add to his
system, the local vendor representative contacts the vendor computer that maintains
the database described above, transmits the requisite serial numbers and receives
this bit string in response. In this fashion a main TRM acquires master keys for
slave TRMs. This method does not impose long delays as the factory customizes
TRMs for specific systems nor does- it require trust in the local vendor

representative!

Physical transfer storage may not be implemented in the encrypted bus approach
because of the high cost of TRM packaging for demountable storage media.
Instead, external software will most likely be distributed via a communication
network as described in section 2.3.4. However, one can develop mechanisms for
distributing cxternal software via transfer storage media. These mechanisms are not
directly related to the encrypted bus technigues developed in this chapter but rather
are bascd largely on operating system conventions. For transfer storage, there is a
requirement that related files (transfer vnits) on this media be loaded into the file

systcm on secondary storage together and that the operating system be able to

151

An Encrypted Bus Approach

distinguish between vendor-supplied (external) sofiware and client-written software.,
Morcover, since the client may use transfer media as archival storage for external

software, any reloading constraints associated with files in transfer units must be

checked when loading these units into the file system.

The following operating system mechanisms achieve these requirements, All
TRM-packaged, demountable storage media must contain a header (not accessible
by client 170 operations) that identifies the type of storage on the media (sccondary,
wransfer or archival). The operating system checks this header when the media is
mounted, preventing any confusion as to what type of files are contained on the
media. Each transfer unit is recorded as a file consisting of i table of contents and a
list of any non-reloadable files contained in the unit fotlowed by the files that make
up the transfer unit. The operating system loads all of the component files of a
transfer unit into the file system together, deleting any existing copies of these files.
(Existing copies of these files are deleted to ensure the consistency of the transfer
unit in the file system, i.c., to prevent mixing of files from old and new releases of
external software.) The only exception is that any non-reloadable files in the unit
are not loaded if they exist or if they have existed previously (as explained in the
next section). These mechanisms are guite similar to those employed in the

encrypted storage approach for sccuring transfer storage (sce section 4.3).

3.6.5 Secure Archival Storage Reloading Constraints

In section 2.1 three classes of files were distinguished with respect to the
constraints placed on reloading these files from secure archival storage into the file
system on secure secondary storage. A clicnt may be free to reload any copy of a file
(unconstrained), he may be allowed to reload only the most recent archived copy of
the file (most-recent-only) or the file may be declared non-reloadable. There also

may be a requirement that rcloadable files be grouped into archival units, so that all

152

An Encrypted Bus Approach

of these files are reloaded together. Archival storage is presumed to be
demountable and, as with transfer storage, it is not clear if demountable media can
be TRM-packaged in an cconomically feasible fashion. Thus the problem of
enforcing reloading constraints may never arise in systems based on the encrypted
bus approach. However, one can outline a method of enforcing these constraints in
the context of such systems. The method proposed here, like the one described
above for transfer storage, is based on operating system conventions for saving and
reloading files from archival storage. These conventions depend on the
maintenance of a table that identifies non-reloadable files and that lists the name
and the time and date of the most recent copy of files archived with that reloading

constraint,

All files on archival storage arce represented as archival units using the same type
of format as transfer units, i.e., a table of contents of the files contained in the unit,
the reloading constraint associated with these files and the time and date the unit
was written. (Al of the files in an archival unit share the same reloading constraint.)
The operating system provides a mechanism by which external software can direct
(automatically or in response to a client request) one or more files to be saved as an
archival unit along with the reloading constraint for the unit. The operating system
also maintains a dircctory on cach archival storage volume for locating files in
archival units on that volume. A request to reload a file causes all of the files in the
unit to be reloaded, subject to the reloading constraint associated with the unit,
Non-reloadable files are so marked on secondary storage by the operating system

and thus are not subject to archiving,

The operating system maintains a table on (non-demountable) sccondary storage
identifying all non-reloadable files and listing the time and date when the last
archival unit containing each file with the most-recent-only reloading attribute was

written. This tablc is consulted when a unit with the most-recent-only constraint is

153

An Encrypted Bus Approach

reloaded, when transfer 1nits containing non-reloadable files are loaded or when

external software requests creation of a non-reloadable file. If this table is

destroyed, no files with the most-recent-only reloading constraint can be reloaded
and no non-reloadable file can be created or loaded from transfer units. Thus this
table must be maintained in a highly reliable fashion. Section 4.3.4 describes
techniques for ensuring the robustness of an equivalent table used for the same
purpose in the encrypted storage approach and these techniques are applicable here.

The interested reader is referred to that section for further details.

3.7 Conclusions

The technigues developed in this chapter enable a computer system constructed
from two or more TRM-packaged pieces to protect external software from
disclosure and undctected modification. Several important techniques were
introduced in this chapter. 'The stream cipher mode employed here is specially
designed to minimize delay and maximize throughput. In particular, this mode
permits multiple crypto devices to be used in parallel 1o generate crypto bit stream
at very high rates. The shortened DES calculation employed for CEDCs enables
simple secure transactions to proceed at relatively high rates. Use of a distinct crypto
bit strecam for cach simplex channel supports asynchrony in secure transaction
scenarios. This is critical to the elimination of authentication checks at the slave
during simple secure read transactions (enhancing throughput) and it allows control
and data transfer connections to be combined. Finally, aggregate secure transactions
reduce overhead on data transfers between primary memory and TRM-packaged
storage devices by transmitting a cumulative CEDC at the completion of the

transfer, rather than transmitting a CEDC with cach transaction.

154

An Encrypted Bus Approach

The only weakness of the designs presented in this chapter arises from the limited
traffic analysis that can be carried out on exposed portions of the bus. The amount
of information that is released in this fashion depends on the choice of
configuration, but it is very small in most cases anyway. In SYSTEM A and
SYSTEM B the impact of the protection measures on system performance is
negligible and the cost of the required CBIls should be acceptably small. For
systems in which primary memory is independently packaged. the performance
impact of these measures is greater, but this impact can be minimized through
appropriate configuration choices, e.g., a cache-cquipped, dual-bus design. Thus
SYSTEM D is preferred over SYSTEM C since the dual-bus design minimizes the
cost of proposed bus cnhancements and yields simplier CBIs. However, the
processor and memory CBls in both systems may be expensive, due largely to the
number of cryptographic devices required.

Demountable media could be developed for these designs, but it is not clear if
stich media would be economically feasible to produce, since both the media and its
access hardware must be packaged together. Thus distribution of external software
is best accomplished through sccure communication techniques as described in
section 2.3.4 and demountable secondary or archival storage options may be limited
or non-cxistent. The encrypted bus designs offer greater flexibility than the
monolithic TRM design, but the cost of TRM packaging, including CBls, may
preclude the configurations that offer the greatest flexibility, c.g.. SYSTEM D. The
encrypted bus approach is highly transparent, i.c., there is little or no impact on
most external software and very little software is devoted to managing the protection
mechanisms. By adopting appropriate conventions for assignment of bus addresses,

CBIs can determine if a transaction should be repeated outside the TRM and, if it is

repeated, whether it must be encrypted.

! i ‘
t

Chapter Four

An Encrypted Storage Approach

to Protecting External Software

This chapter explores in detail an approach to securing external software based on
the use of cryptographic and protocol techniques to protect data stored outside a
TRM (using physically unprotected media and devices). In this approach, a
processor and some of the fower levels of the storage hicrarchy are enclosed in a
single TRM and all data in higher levels of storage (outside of the TRM) are
protected by being encrypted and by the use of appropriate protocols. This design
approach allows significant use of off-the-shelf cquipment since the storage and
transmission of encrypted data is genecally transparent to the devices and the
bus(es). Special equipment is required only at the point where data must be
cryptographically transformed, i.e., at the TRM boundary. These transformations
are effected by a secure storage interface (SS1) that provides encryption, decryption

and crror checking services.

The boundary between the TRM and physically unprotected storage occurs at
one of three points, as illustrated in Figures 4-1 and 4-2. In SYSTEM E only
transfer and archival storage is outside the TRM, whercas in SYSTEM F sccondary
memory is also physically unprotected and in SYSTEM G and SYSTEM H even
data in primary memory is subject to intruder attack. These four system
configurations correspond directly to those presented at the beginning of Chapter 3.
Here too the organization of the processor and primary memory (dual or single bus

system, cache or cacheless processor) are irrelevant in the first two systems (E and

156

An Encrypted Storage Approach

). In the later two systems (Goand) the choice of a single or dual bus

arrangement and a cache or cacheless processor is critical.
s |
CcpPU S

!

P-MEM S-MEM T&A* other peripherals
System E

s

P-MEM S-MEM* T&A* other peripherals

System F

Figure 4-1: Two System Configurations Employing a TRM and an SSI

157

1
1

An Fnerypted Storage Approach

CPU |s ‘l

P-MEM* S-MEM* T&A* other peripherals

o

System G
' S
CcPU s

S8l \'
S-MEM* T&A* other peripherals

P-MEM*

SystemH

_ Figure 4-2: Two More System Configurations Employing a TRM and an SSI
158

'A .. . fwima men em . aen AT T g M < R AP O e m e
P _ . . N Gandl o sl L . - W a oy .

An Encrypted Storage Approach

As in Chapter 3, successive configurations decrease the number of devices
contained within a TRM, increasing flexibility by allowing more options in
equipment selection and greater opportunity for system change both for growth and
maintenance. Here, since only one TRM is employed, these configurations allow
for even greater flexibility since devices outside the TRM are off-the-shelf. These
designs make practical the use of conventional media for T&A storage and
demountable secondary storage, overcoming a serious limitation of the encrypted
bus designs. Moreover, these designs use fewer TRMs and encryption chips, thus
reducing overall system cost as compared with the encrypted bus approach. These
improvements are not without attendant costs. The encrypted storage approach
requires explicit software control by external software or operating systems to
manage databases that are pah of the protection mechanisms. These databases
decrease available storage at each level in the hierarchy and require maintenance
activities that involve additional transfers among levels in the storage hicrarchies

(resulting in processing delays and decreased bus availability).

4.1 Security Requirements in the Encrypted Storage
Approach

The two major aspects of protecting external software, preventing release of and
detecting modification of information, translate into several specific requirements in
the context of encrypted storage designs. In this context storage devices and bus
scgments outside the TRM are subject to physical attack by an intruder and the
semantics of sccure operation are somewhat different from those encountered in the
encrypted bus environment, Thus, instcad of defining sccure system operation in
terms of individual bus transactions, here system security is defined in terms of
reading and writing of storage units, cncrypted collections of data that are

independently protected. This higher level specification of security requirements

encompasscs attacks launched against vulnerable bus segments and storage devices.
159

An tnerypted Storage Approach

Figure 43 shows the simple model used o discuss intruder attacks and security
requirements for encrypted storage designs. This model applics to all four
configurations shown in Figures 4-1 and 4-2. Only two operations, Read and Write,
are included i this model. These operations transfer storage units across the
boundary between protected storage in the TRM and unprotected storage outside
the TRM. Note that several bus transactions are usually required to cffect these
higher level operations, e.g., transfer of a disk sector between primary and sccondary
memory involves control transactions and a number of read or write transactions to
ctfect a storage unit Read or Write. Each operation involves two values: the storage
unit being transferred and an idenvifier (1D) that designates the storage unit. (The
size of the storage unit is either implicit or derivable from the representation of the
unit.) Different storage units and corresponding IDs arc employed for each level in

the memory hierarchy.

In transfer and archival storage the units are collections of (one or more) logically
inter-related files that are distnibuted or archived and reloaded together (see section
2.1). in this context IDs are often character string file names, perhaps qualified by
the date and time at which the storage unit was created. In secondary memory the
storage units are generally disk sectors and the 1Ds are sector addresses qualified by
disk identifiers. Files do not fit the definition for storage units at this level in the
memory hicrarchy since individual sectors may be read or written and processed
independently of other portions of the file and since non-file data structures, e.g.,
dircctories and file maps, also must be be protected. In primary memory there are
two choices for storage units, words and cache lines, depending on processor
configuration. Because of the space overhead associated with each storage unit for
sccurity purposes (described in the following scctions), cache lines offer the only
practical option for storage units in primary memory. In this context, IDs are

primary memory addresses truncated to reflect the size of cache lines.

An Encrypted Storage Approach

TRM Physically Unprotected Storage
identifier
—»
Read
storage unit
<
identifier
>
Write
storage unit
Boundary

Figure 4-3: A Simple Model for Encrypted Storage Operations

Using the model pictured in Figure 4-3, the vulnerabilities and corresponding

security requirements for Read and Write operations are readily stated. In a Write

operation both the storage unit and its [D are transmitted by the TRM across the

boundary. Unless suitable precautions are taken, the data in the storage unit will be

exposed to an intruder. Hence concealment of data in the storage unit, including

hiding of patterns within and across storage units, is an obvious rcquircmcnt.q An

9ch that a Write to a sccondary or T&A storage device is cffected through read bus operations
{dirccted to primary memory) by that storage device. ‘Thus there is an additional requirement that
these read operations be restricted to appropriate primary memory locations.

161

An Encrypted Storage Approach

muruder also can effect information refease by engaging in vaffic analysis, 1.e., by
examining patterns of access © physically unprotected storage. The 1D associated
with cach operation cannot be concealed: it must be available so that devices can
correctly store and feteh the storage units. Therefore some level of traffic analysis is
always possible using this approach. As m the encrypted bus approach, the amount
of information available through traffic analysis is configuration- and application-
dependent. In gencral, SYSTEM E provides fewer opportunities for traffic analysis
than SYSTEM I which in turn provides fewer than SYSTEM G or SYSTEM 1L
Each of these configurations provides more detailed traffic analysis information

than the corresponding encrypted-bus configuration,

In 2 Read operation, an 1D is transmitted by the TRM across the boundary and
the physically unprotected storage system returns a storage unit. Thus Read
operations release information only through traffic analysis.'0 The remaining
securily reguirements for Read operations deal with detecting modification of
information and are simply explicit statements of the assumptions usually associated
with normal system operation. Thus the requirements associated with a Read are
simply stated: The storage unit returned in response o the Read must be the most
recent unit written by the TRM using the same 1D specified in this Read, and the
unit must not have been modified while outside the TRM. This concise statement
cmbodies the authenticity, integrity and timeliness assumptions implicit in normal

operation,

The timeliness assumption is important since it is the foundation upon which
various application-specific consistency algorithms are constructed, especially at the

primary and sccondary storage levels. 1f software executing in the TRM could not

mNo(c that a Read from a secondary or T&A storage device is actually cffected through bus write
operations (dirccted to primary memory) by that storage device. Thus there is also a requirement to
restrict those write operations to appropriate primary memory locations,

162

An Encrypted Storage Approach

be certain that the disk record or cache line just read was the last one written with
the same 1D, secure operation would be impossible! However the timeliness
guarantee is not so well suited to transfer and archival storage. For transfer storage,
the guarantee 1s not applicable since this storage is, by definition, externally
supplied and not modified by the TRM. (The assumption here is that these storage
units consist of programs and associated static, immutable databases.) Here
consistency is expressed by grouping files into transfer units (see scctions 2.1 and
3.6.4). For archival storage, consistency is expressed by grouping files into archival
units and by the reloading constraints associated with files. For archival storage, a
timeliness guarantee is required in some cases (most-recent-only and non-reloadable

files) and may be ignored in others (unconstrained reloading).

This perspective of intruder attacks and corresponding sccurity requirements
views Write operations as subject to attacks that release information (directly or via
traffic analysis) whercas Read operations are subject to traffic analysis and to various
modification attacks. More precisely, modification attacks during Write or Read
operations or while data is held in storage are detected only at the time when the
modificd storage units are transferred (by a Read) across the boundary into the
TRM. The model does not distinguish when or where a modification attack occurs,
¢.g., on the bus during a Write or Read or in the interim when the data is in storage.
This level of abstraction in discussing attacks and defining requirements is
appropriate since the protection mechanisms developed in this scction counter these
attacks independent of the fashion in which they are effected. In addition to these
requirements for operations on encrypted data, there is the need to restrict access to
locations within the TRM (primary memory and device control registers) by non-
secure DMA devices, a requirement that aiso arose in the encrypted bus approach.
The next section refines this description of security requirements and presents

techniques sclected for meeting these requircments,

163

An Fnenypted Storage Approach

4.2 Basic Techniques for the Encrypted Storage Approach

A combination of cryptographic and protocol technigues are employed to achieve
the requirements established in the preceding section. Although these technigues
vary slightly depending on system configuration, the basic concepts invoived are the
same in cach case. One type of attack, traffic analysis, is essentially identical in both
enenypled bus and encrypted storage environments and is treated in essentially the
same fashion in both. fn both environments the only way to counter such attacks is
through the gencration of sufficient, spurious 170 operations to conceal real traflfic
patterns. Such countermeasures are readily implemented but the performance
impact of these countermeasures in most configurations is so great as to effectively
preclude their adoption. Thus the only option is to select a configuration which
exhibits an acceptable level of susceptibility to traffic analysis. This shortcoming
with respect to traffic analysis is analogous to that presented by the encrypted bus
approach, but here the level of traffic analysis detail available to an intruder is
greater than in corresponding encrypted bus configurations, i.e., specific addresses
are visible. This sucaests that if traffic analysis is viewed as a serious problem,
encrypted bus systems may be preferred over comparable encrypted storage

conligurations.

The encryption techniques employed for storage protection must conceal the data
in the storage unit, provide a means for associating an ID with the unit, support
detection of modification of the unit and distinguish among successive versions of
the unit. This last point is very important and deserves further explanation. The
IDs associated with storage units arc generally reused, referring to different data
over time. This is certainly true of the addresses used for primary and sccondary
memory IDs, except in the case of write-once media such as video-disks. For
archival storage the problem arises if file names are used as 1Ds, unless the names

are further qualified in some way, e.g., marked with the time and date of archival

164

. e, Wy

An Encrypted Storage Approach

unit creation. Most software is written under the (implicit) assumption that no
malevolent entity will attempt to violate system integrity by taking advantage of 1D
reuse. To avoid this problem, [Ds will be augmented, where necessary, with a
version tag (V1) to provide version differentiated IDs that uniquely identify cach

distinct storage unit over time,

In order to fulfill the security requirements set forth in the preceding section, the
following techniques are employed. First, cach storage unit is encrypted using a
cipher method employing an initialization vector formed from the unit's D and VT.
Encryption with an appropriate cipher method conceals patterns within a storage
unit. The use of an 1V based on the 1D and the VT conceals patterns across unit
boundaries and across versions of a unit. Sccond, associated with cach storage unit
is an error detection code (E[)C)ll calculated on the 1D and VT as well as the data
in the unit. This EDC detects modification of the data and, because it covers the 1D
and VT, it detects attempts to return other than the requested unit, i.e., a unit with
the wrong 1D or VT. Finally, a version tag table (VTT), keyed by storage unit 1D, is
maintained inside the TRM. This table provides a reference point for the timeliness
guarantee by establishing the current VT associated with cach storage unit. On each
Read, the 1V formed using the ID and the VT from the version tag table is employed
to decipher the storage unit. If the storage unit is from the wrong location or is not
the most recent one stored at the proper location, the storage unit will be improperly

deciphered and the EDC check will fail.

Using these technigues, Read and Write operations are extended in the following
fashion. On a Write, the VT for the storage unit is fetched from the VIT, updated

and, with the ID, used as an 1V in encrypting the unit before storing it outside the

ll'l'his EDC may be a conventional error detection code or it may be a cryptographic EDC
(CEDC) or an authenticity/integrity check ficld (AICEF) depending on the encryption mode
cmployed.

165

An Encrypted Storage Approach

IRM. The EDC is calculated on the 1D, updated VT and the data, and it is
cncrypted and stored along with the unit. 'The updated VT is stored in the VTT,
completing the operation. On a Read, the VT for the unit is fetched from the VIT
and used with the 1D as an 1V for deerypting the unit as it is transferred into the
FRM. The EDC is calculated on the 1D, VT and the data as the transfer progresses
and, when the transfer (data and EDC) is complete, the retrieved EDC is compared
to the calculated EDC. 1 the EDC comparison succeeds, the storage unit is the one
requested and it is intact, so processing can proceed sccurely in the TRM. If the
comparison fails, cither the unit was modified or the wrong unit was returned
(ncorrect 1D or VT) and the unit is invalid, ¢.g., it may be viewed as having an

unrecoverable error.

Just as the simple model of security requirements in section 4.1 does not fully
capture the vagaries of T&A storage, this simple model of secure operation must be
modified slightly to encompass Read operations for encrypted T&A storage. There
is no need for a VT for transfer units since these units are not created by the TRM
and arc not modified by the TRM. lInstead, a version differentiated name is
recorded with the transfer unit for use in decryption. Thus a Read of a transfer unit
involves no fetch of a VT'T entry. A VT'T is required for archival storage to track the
archival unit containing the most recent copy of each file with the most-recent-only
rcloading constraint. A table containing the 1Ds of all non-reloadable files also must
be maintained. These tables perform the same functions as those described for the
encrypted bus approach designs in sections 3.6.4 and 3.6.5. Since some files may be
reloaded from other than the most recent archival unit copy (unconstrained

reloading), the version differentiated name is recorded with each archival unit.

Finally, it is necessary to control DMA access to storage locations within the main
TRM in the case of SYSTEM E and SYSTEM F. The individual (write) bus

transactions that implement Read operations must be restricted to appropriate

166

An Encrypted Storage Approach

primary memory locations, otherwise data in primary memory may be destroyed.
This same problem arises in the encrypted bus approach and in the monolithic-
TRM design in the context of aggregate transfers by non-secure DMA devices and
the same solution is applied here. The secure storage interface (SSI) must act as a
filter to restrict access to locations within the 'TRM. This applies not only to
encrypted data transfers but also to accesses by non-secure DMA devices, just as in
the encrypted bus approach. For each memory region that is accessible from
outside the TRM, the SSI must be aware of the bounds of the region, whether read
or wrile (or both) transactions are ailowed and whether the transactions involve
encrypted or cleartext data. Furthermore, the SSI must contain intra-TRM bus
traffic, not repeating it onto the bus segment outside the TRM. This restriction is
readily implemented by adopting the convention of assigning bus addresses that use
a bit or two to distinguish between devices inside and outside of the TRM as

described carlier.

The preceding discussion outlines the general techniques employed for securing
encrypted storage at cach level, but it does not describe all of the details involved.
For cxample, it does not specify particular encryption techniques nor EDC
computation strategics. Reliability measures and recovery strategies have not been
discussed nor have the problems of storing large VITs inside small TRMes.
Tradeoffs in performance versus sccurity related to the size of VTs and EDCs also
must be addressed. The following sections deal with these problems, specifying the
details of encrypted storage management for T&A storage, secondary storage and
primary memory. Readers who do not wish to delve into these details should
proceed to section 4.6 (page 208) for a summary of the highlights and the

conclusions of this chapter.

167

An Encrypted Storage Approach

4.3 Techniques for Encrypted Transfer and Archival
Storage

The first issue to be resolved in filling in the details of secure T&A storage
management is the selection of an encryption mode and an EDC calculation

strategy. Transter of an archival or a transfer unit between T&A storage and

primary memory takes place at the speed of the T&A storage device, so the cipher
method employed need not exhibit especially low delay, i.c., an extra cryptographic
cycle or two on each unit transfer is acceptable. To avoid the need for additional
hardware in the TRM for EDC or CEDC calculation (an EDC chip or an extra
crypto chip) a cipher method with forward error propagation is employed. Since
storage units at this level are relatively large (one or morc files) and space is not at a
premium, precise matching of encryption granularity and storage unit length s not a
reqguirement. These observations suggest that block chaining with
plaintext/ciphertext feedback (PCBC) is an appropriate cipher method for this
application (see section 2.3). A predictable bit pattern embedded in the string at a
known point serves as an authenticity/integrity check ficld (A1CH) protecting all of
the text preceding it. A version differentiated name employed as an IV is implicitly

included in such an AICF.

4.3.1 Version Differentiated Names and the Archival Unit VTT

The next issue to be resolved is the form of version differentiated names for T&A
storage and the related wpic of a VIT for archival units. Clients and subsystem
writers often think of T&A storage in terms of the names of the files recorded on the
media. However, transfer and archival units may contain several files grouped to
reflect logical dependencies among them, so individual file names are not always
appropriate as 10s for thesc storage units. Moreover character string file names

must be qualified in some way to distinguish successive archival units of the same

168

An Encrypted Storage Approach

file (or groups of files). To avoid these problems, a unigque bit-string, identiticr (a
UID) is assigned as a version differentiated (D for each transfer or archival unit.
Media used for transfer or archival storage usually contain a catalog that maps file
names 1o their location(s) on the media and this catalog is casily ¢xpanded to
provide a file-name-to-UID mapping. For archival units with the most-recent-only
reloading constraint, a second map is needed: an archival VTT that associates with a
file the UID of the most recent archival unit containing the file. (Non-reloadable
files also are included in this table, using a distinguished ULD to differentiate them.)
The archival VTT is maintained on secondary storage as a table of file names and

UIDs for files exhibiting this reloading constraint.

4.3.2 Format of Transfer and Archival Units

Figure 4-4 illustrates a sample format for an extended media catalog (containing
storage unit UIDs) and for transfer and archival units (the two are quite similar).
Note that the media catalog is unencrypted and is noa-standard only in the addition
of the UID field to each entry. However, cach storage unit {(transfer or archival) is
encrypted. ‘The unit begins with a header describing the unit and the files contained
thercin, The exact ficlds contained in the header will be system- and media-specific
but should include the unit type (transfer or archival), header and total unit length,
etc. Typical file entrics would contain the file name, length, reloading constraint
and other attributes included as an aid in (re)constructing secondary storage catalog
entries. An AICF is appended to the header, providing a check on it, and the files
follow this AICF dircctly. The entire unit, from header through final AICFE, is
encrypted as a continuous bit string using the PCBC cipher method noted above. 1n
principle, only this final AICF is required but, since the header is used to control
reloading, the header AICF is included to detect errors that might result in file

system damage before the final AICF is encountered.

169

Storage Unit

(encrypted)
3
overall unit description
Media Catalog file name attributes
(cleartext) . o
° ™
[J [
media descriptive information
header AICF
file name location uiD
file 1
[J [[J
[[o [J
[[] [J [J
L]
file n
overall unit AICF

Figure 4-4: Format of Secure T&A Storage Media

Although the format of encrypted T&A media is similar for both transfer and
archival purposes, there may be a difference in the key used to encipher the media.
If transfer units arc enciphered using the master key associated with a TRM, the

units cannot be recorded until the target TRM is known. Demand recording of

170

O

An Encrypted Storage Approach

An Encrypted Storage Approach

transier units is quite feasible for mail-order sales of proprictary software and could
be carried out at local stores using high speed communication facilities to transmit
the units for local recording. (Newwork-based distribution of external software is
carricd out in this approach just as it was described initially in section 2.3.4)
Alternatively, transfer units can be pre-recorded under randomly selected keys,
which arc then enciphered under the master key of the target TRM. This 1s
essentially the same technique employed in the encrypted bus approach (for
distribution of TRM components) and it requires only low speed communication
between a local store and the vendor. In this approach the encrypted key can be
recorded, at the local store, in a reserved location in the media catalog, making life
somewhat more convenient for the clhient. The former distribution method is
preferred since it means that the TRM need deal with only a single key for all

encrypled storage, but the latter method can be employed if necessary.

4.3.31/0 Operations on T&A Storage

It is now appropriate to examine the details of Read and Write operations on
transfer and archival storage units. Remember that these storage units may consist
of as little as a single file or may be a collection of a number of files. First, consider
operations on transfer units. These units arc Read by TRMs to initially load
external software but TRMs are not allowed to Write these units, (The TRM
operating system controls all encrypted 170 so it is capable of enforcing this
prohibition.) To Read a transfer unit, the media containing the unit is mounted, the
(cleartext) media catalog is scanned to determinge the location and ULD of the unit of
interest (or of any file contained therein). This UID is loaded as an IV in an SSI
crypto device in preparation for decrypting the transfer unit. (IF transfer units on
the T&A media arc encrypted under a key other than the TRM master, then the
encrypted form of this key is retrieved from the media catalog and loaded along
with the UID.)

v

An Encrypied Storage Approach

Nent, the unit header is decrypted and transferred to primary memory where it is
checked (using the embedded AICF and the header length constraint) and used to
establish entries 1n the file system catalog for the files in the unit. Note that transfer
units may serve as archival units for the programs and databases that constitute a
protected subsystem, since the files on these units are non-muodifiable, so file system
entries may already exist for some of the file in the unit, If so, these entries are
deleted when encountered in this phase of the unit Read operation, to cnsure that
the file system entries are consistent. However, any non-reloadable files contained
in the transfer unit are not deleted if encountered. Rather a check is made against
the archival VI'T o ensure that any non-reloadable files in the transfer unit do not
currently exist and have not existed previously (and were later destroyed). Non-
reloadable files being loaded for the first time are recorded in the archival VIT to
preclude any violation of this constraint. Each file in the unit is decrypted and
transferred to primary memory and entered into the file system in secondary
storage. When the last file has been transferred, the AICF covering the unit is
checked. If this check succeeds, an OK flag in cach file system entry just loaded is

set to TRUE, indicating that the entire unit has been loaded successfully.

For archival units, both Read and Write opcrations are supported. An archival
unit is created (a Write) by a call on the TRM operating system specifying the
collection of files that are collected together to form the unit. External software
invokes this operation on its mutable databases (or on the software itself) either
periodically or when requested by the client. The operation begins with the
mounting of archival media. The (unencrypted) media catalog is transferred to
primary memory and modified to contain an entry for the new archival unit (virgin
media is initialized with a null catalog). The unit header is constructed, gathering
information from file system entries for cach member of the unit, encrypted and
transferred to the media. Then each file is encrypted as part of a continuous

cryptographic chain and transferred to the media with an AICF appended to the

end, and the updated media catalog is re-writtén.
172

An Encrypted Storage Approach

Reloading an archival unit (a Read) is very similar to loading a transfer unit but
the impetus is generally different. Usually the operation is triggered by damage o
data in secondary memory, but it also may result from a program crror or a client’s
deeision to "roll-back the clock™ with respect 1o some processing. A request to
reload any file in an archival unit results in reloading all of the files in the unit (to
ensure consistency). When reloading an archival unit, reloading constraints
assoctated with the files in the unit must be checked. These constraints will be

uniform for all files in the unit, i.c., all will cither be most-recent-only or

unconstrained. Only if the unit consists of most-recent-only files does the Read
opceration check the UID specified in the media catalog against the UID from the
archival VI'F and require that the two must match. Like the Read of a transfer unit,
any files in the archival unit which already exist in the file system are deleted to
ensure consistency. Thus a Read operation on an archival unit is almost identical to

a Read opceration performed on a transfer unit.

4.3.4 Robustness of the Archival Storage Protection Measures

If the archival VTT is damaged, files with the most-recent-only reloading
constraint cannot be reloaded (since there is no way to determine which archival
unit contains the most recent copy of the files). This type of damage nced not

preclude reloading of files that do not possess this constraint since the archival units

B IR tirmn.. ey oy

for such files can be examined to determine their (lack of) reloading constraints. To
enhance system robustness, the archival VT'T should itself be archived (as a most-
recent-only file), but this poses a problem. If the archival VITT is damaged and its
most recent archival copy is reloaded, the entries for most-recent-only files archived
since the archival VTT copy was created are lost, violating the most-recent-only
constraint! To avoid this problem, updates to the archival VIT must be recorded in

a non-reloadable file, the archival VT'T updare file, which is erascd every time the

173

An Encrypted Storage Approach

archival VT s archived,. The UID of the current archival copy of the archival
VT must be mamtained in some highly rehiable fashion within the TRM, e.g., in

non-volatile memory.

These measures allow recovery from a wide range of sccondary storage failures
affecting files and catalogs. Even file system catalogs can be archived (with the
most-recent-only attribute) and reloaded to facilitate recovery from failures that
dumage these catalogs. In fact, these measures are so cffective in promoting system
robustness that they might create an opportunity to violate sccurity provisions
relating 10 non-reloadable files, A problem would arise if a non-reloadable file
could be created, used and destroyed along with any record of its existence. To
avoid this problem, when a file with the non-reloadable attribute is created, its file
name is recorded in the archival VITT and is marked as a non-reloadable rather than
a most-‘rcccnvnnly file (by using a distinguished value for a UID). Since updates to
the archival VTT are protected by being recorded in the archival VI'T update file
until the archival VI'T is archived, this solves the problem of Jost non-reloadable
files. When a subsystem attempts to create a non-reloadable file (or when a transfer
unit containing a non-reloadable file is loaded), the file name is checked against the
archival VTT to prevent violation of the timeliness guarantee, and an entry is

created only if this is a new non-reloadable file.

This existence of the archival VI'T does not enhance system robustness with
respect to non-reloadable files (1f such a file is damaged it is lost.), and it might even
diminish robustness. If both the archival VI'T and its update file are lost, no new
non-reloadable files can be created or loaded from transfer storage and no most-
recent-only file can be rcloaded. However the loss of both of these files can be
made very unlikely. The loss of any non-reloadable file is a very serious matter
since it precludes use of the external software that employs the file. This suggests

that non-reloadable files, including the archival VTT update file, should receive

174

An Encrypted Storage Approach

special consideration from the file system. For example, such files can be recorded
at two physical locations in sccondary storage and have similarly redundant catalog
entries to reduce the likelihood of their loss. Note that non-reloadable files are
expected to constitute a relatively small fraction of all files, and may not occur at all
in many systems, so these extraordinary robustness measures should not have a

significant impact on the system.

4.3.5 Etfects on Performance, Storage Utilization and the Operating

System

Now that the description of protection measures for T&A storage is complete, it is
appropriate to consider the effects of these measures on TRM operating system
structure, system performance and storage utilization. The TRM operating system
provides three new (or enhanced) functions: the Read operation for transfer units
and the Read and Write operations for archival units, These operations have been
described in some detail and are fairly simple. The operating system must make
special provisions for creation and management of non-reloadable files, but some of
these provisions would be required cven in standard systems. System performance
should not be significantly affected by the proposed measures; operations involving
T&A storage are relatively infrequent, and the cryptographic transformations should
not prove a bottlencck but only add a small delay to DMA transfers involving this
storage. Delays will result from checking the archival VTT during reloading of
most-recent-only files and creation or initial loading of non-reloadable files, but

thesc are infrequent operations and thus the effect is not severe.

With respect to storage utilization, the protection measures increase the sizes of
media catalogs and T&A storage units, and require two new files: the archival VIT
and its update file. Catalogs for T&A media grow to accommodate storage unit

UIDs whereas storage units grow to include reloading constraints and AICFs (and

175

An Encrypted Storage Approach

may require padding for encryption). A 32-bit AICF should provide adequate
protection for these storage units, especially since two such fields are contained in
cach unit. The UID associated with cach unit should be large enough to identify
every archival unit ever produced by a given TRM and to distinguish every
distribution unit provided for a given TRM. A 32-bit UID permits a vendor to
provide over 4 billion distribution units to a single TRM and supports archival unit

creation at the rate of onc per second for over 120 years. The IV used for

encrypting/decry pting storage units should be a full 64 bits, so the 32-bit UID is
augmented with 32 additional bits. Two of these additional 32 bits are used to
distinguish among UIDs employed for archival, transfer and secondary storage units
whereas the remaining 30 bits are unigque per TRM. (This last set of bits may be

viewed as an extension of the TRM master key.)

The increases in space on T&A media due to AICFs and UIDs are negligible
(probably << 1%) since the storage units are files or groups of fites. Some secondary
storage space is devoted to the archival VTT and its update file, and the media
containing these tables must be mounted for creation of non-reloadable files and
reloading of most-recent-only files, Files with these reloading constraints are not
expected to be the norm, so the archival VIT and its update file will not be too
large. Thus the effects on storage utilization brought about by the measures are not
expected to be significant. The impact on overall system robustness also should be
minimal. The two new types of secondary storage data introduced to support
encrypted archival storage, the archival VTT and its update file, are critical to
system operation. However, the archival VTT is archivable and its update file is

expected to be replicated in storage and catalog cntries, like other non-reloadable

files. Thus, only if both of these files are destroyed simultancously will the system

suffer irreparable damage. !

176

T

e

An Encrypted Storage Approach

4.4 Techniques for Secondary Storage

The protection measures presented in this section folfow very closely the basic
concepts presented in section 4.2, In this context, storage unit 1Ds are sector
addresses qualified by the 1D of the media containing the unit. The VT'T, implicitly
mdexed by sector address, contains the VT associated with cach sector for every
encrypted secondary storage volume registered with the system. The integrity,
authenticity and timeliness vequirements are exactly as stated in section 4.1, with no
exceptions. Thus Read and Write operations (sector transfers) proceed just as
described in section 4.2, Even though performance degradation in storage unit
transfers is more critical at this level than at the T&A level, the same cryptographic
method is employed. Throughput with this method is more than adequate (even
using a single crypto chip) and the added delay 1s still a negligible fraction (<< 1%)
of total sector transfer time. A 32-bit AICF is appended to cach scctor, increasing

sector size by about .75%.

4.4 .1 The VTT Hierarchy

The major problem with this obvious approach is that it is impractical (0 mairtain
a secondary storage VTT within the TRM boundary. For example, a typical 30M-
byte (unformatted) disk contains about 50,000 512-byte sectors. If cach VTT entry
consists of a 32-bit VT (assume the address of the sector being protected is implied
by index of the VT in the VTT), the resulting VI'T occupics 200,000 bytes and this
covers only a single volume! The amount of secondary storage devoted to the
sccondary storage V1T is not a concern, but it is generally impractical to maintain
this VI'T inside a TRM. This space problem suggests that the sccondary storage
VTT should be hicrarchically organized, with only the root maintained within the

TRM. Figure 4-5 illustrates a 4-level hierarchy for the secondary storage VTT,

17

e —.

An Encrypted Storage Approach

RVTT MVVTT WTT SGVTT data
(level 0) l (level 1) l (level 2) (level 3) sectors
~
I - l —_— °
I N\ :
' EDC \ EDC . EDC
rall I
l EDC I EDC DC
- I o ' . EDC
I . I .
[
[
I | .
! EDC ! EDC EDC
TRM non-demountable
registers volume per-registered volume

Figure 4-5: Hicrarchic Organization of Secondary Storage VIT

In this figure, the arrows indicate which sectors are covered by VTT cntrics in a
given level of the VTT hierarchy. Below the root VTT (RVTT) (level 0) is the
master volume VTT (MVVTT) (level 1) which contains one entry for cach
cicrypted volume registered with the system. Each volume contains a volume VIT
(VVTT) (level 2) and below it is the sector group VIT (SGVTT) (level 3). At each
ievel of the hierarchy a VTT protects the sectors at the next level with the bottom

178

RSO i ois i

An Encrypted Storage Approach

level (sector group) VIT protecting data sectors. This recursive structure protects
every sector in secondary storage in the same fashion by using the associated AICF
and the corresponding VT recorded in the preceding level of the hierarchy; hence
there is no difference in the protection afforded a data sector versus a VITT sector at

any level.

The root VTT contains the volume ID and addresses of ¢ach sector occupied by
the master volume VIT as well as a VT for each of these sectors, all maintained in
non-volatile storage within the TRM. Each master volume VTT entry contains the
ID of the volume represented, the addresses and VTs for the sectors that make up
the volume VTT and other supporting information. At the volume VTT and sector
group VTT level the addresses of the sectors being protected need not be explicitly
stored along with the VTs, but can be implicitly derivable from the index of the V1s
in the VTTs. Implicit addressing in the volume VTT entries requires the sector
group VTT sectors to be contiguous or to be dispersed about the volume in some
fixed pattern (to optimize scek time). The sector group VTT always employs
implicit addressing since it is usually trivial to arrange for the sectors covered by
these entries to be contiguous. Throughout this chapter the assumption is made that
the sector group VTT sectors are contiguous in order to reduce the amount of space

devoted to volume VTT entries. (This assumption does not affect the security of the

design.)

This hierarchic structure avoids the nced to store the entire VTT inside the TRM,
but it transforms each reference to secondary storage into a chain of references
through the levels of the hierarchy, as shown in Figure 4-5. Consider a reference to
a sector with ID (fully qualified address) vx, where v is the volume 1D, and x is a
sector address. The reference chain begins at the root VIT with the volume 1D and
addresses of the master volume VTT and the VTs for cach master volume VIT

sector. Using this information from the root V1T, the master volume VTT sector

179

An Encrypted Storage Approach

containing the entry for volume vis fetched. (lCmay be necessary 1o serially search
this table i volume 1Ds are sparse or if entries in the master volume VIT are of
vartable size)) The VI and the address of the appropriate sector of the volume VTT
15 selected from this master volume VTT entry by examining the target address x.
This volume VI sector s fetehed and the VT and address of the appropriate sector
of the sector group VT is selected in the same fashion. Finally this sector group

V1T sector s fetched and the VT for the target sector is selected.

Following this chain of references results in at least 4 sector fetches (perhaps
more depending on the master volume VI'T organization) as compared to the single
fetch required in a standard system. ‘This sort of problem commonly arises in
hicrarchic address translation and it is usually solved by encaching portions of the
translation tables to short circuit the reference chain. In this context encaching
means keeping portions of the master volume VTT, volume VTT and sector group
VTT in primary memory to reduce extra sector fetches. From the master volume
VI'T, entries that correspond to currently mourilcd volumes should be cached. Since
the systems of interest are smatl and master volume VTT entries are small (about 64-
256 bytes depending on the capacity of the volume), these entries (perhaps 2-5)
occupy a negligible percentage (<<1%) of primary memory. At the volume VIT
level the amount of information to be cached depends on the size and number of
mounted volumes and the size of primary memory. For cxample, small and
medium size volumes, e.g., 4M-byte floppy disks through 30M-byte fixed disks,
have volume VT7Ts that occupy about 1-4 sectors, so it is probably feasible to cache
the entire volume VT for such volumes. However, for large volumes, c.g., 300M-
byte demountable disks, tie volume VTT is very large, about 36 scctors, making it

likely that only portions of this table will be cached at any point in time.

Proceeding to the bottom of the hicrarchy, sector group VTTs will range in size

from about 64 sectors for a small disk to about 500 for 2 medium size disk and up to

180

An Encrypted Storage Approach

4000 for a large disk. Thus it is usually infeasible to cache the entire sector group
VTT of a volume in primary memory. In fact, it is often inappropriate to cache
whole sector group VTT sectors since, in the worst case (if cach sector in primary
memory comes from a location not covered by any other sector group VTT sector in
the cache), there must be one sector group VTT cache entry for cach sector in
primary memory. This worst case behavior could result in the sector group VIT
cache occupying 50% of primary memory and thus motivates caching only portions
of sector group VTT sectors, e.g., 8 word pieces instead of full 128-word sectors, [n
this fashion only about 8% of primary memory is required to cope with even the
worst case scenario for the sector group VIT cache. Overall, the caches for the
master volume VI'T, volume VTT and sector group VIT may occupy about 10% of

primary memory if organized in this fashion.

4.4.21/0 Operations on Secondary Storage

Using this VTT hierarchy, Read and Write operations procecd as follows. On a
Read, the volume 1D and sector address are combined with the sector VT to form an
IV for decrypting the target sector. When the scetor has been decrypted, the AICF
following it is checked against the computed value and the operation is aborted only
if the check fails. On a Write, the VT for the sector is fetched from its cache,
updated and used as above 10 form an 1V for encrypting the sector and the trailing
AICF. When the Write completes, the VT cache entry is updated and, at some later
time, the VIT in secondary storage is updated. These descriptions apply to
operations on all sectors and the VTT updates propagate up through the hierarchy.
When a volume is mourted, the master volume VTT is Read and scarched for the
entry for the mounted volume, then this entry is stored in the master volume V1T
cache. If the entire volume VTT of the volume is cached, it is Read, otherwise

sectors (or sub-sector portions) of the volume VTT are Read as necded.

181

An Encrypted Storage Approach

References to data sectors proceed as noted above il there ts a hit on the sector
group V'EL cache. A miss on this cache results in flushing a cache entry, if none are
available, and the appropriate sector group VI sector is Read, using the volume
VAE cache for the Read of the sector group VTT. I a modified sector group VI'T
cache entry is flushed, it must be written back. This entails a Read of the containing
sector group VET sector, an update of the sector (which is noted in the VOLUME
VT cache), and a Write of the sector. A miss on the volume VTT cache is handled
analogousty, but will be simpler if volume VTT cache entrics are whole sectors
rather than sub-sector pieces. Periodically, or when requested by the client or
external software, all modified entries in the VI'T caches can be flushed, starting at
level 4 and proceeding through an update of the root in the TRM, producing a non-
volatile, consistent version of the VITT hierarchy in secondary storage. Until this
flushing operation takes place, changes 1o files (in particular, modifications to non-
reloadable files), are not permanently recorded in the VI'Ts and thus may be

undetectably undone by an intruder.

This VT'T hierarchy is organized solely around the physical media without regard
to file system structure, thus demonstrating that these techniques can be employed
independently of such structure. However, it may be advantageous to integrate the
hicrarchy with the file system structure, For example, the sector group VT'T VTs
can be integrated with the tables used to map sectors of a file to their secondary
storage locations, and the volume VTT can be extended to cover these integrated file
maps/VTTs. The file maps will grow by about 200% (duc to the presence of VTIs)
but since the cache space devoted to such maps is often on the order of 1.5-2.5% of
primary memory, the coeched level 3 VTs will require only 3-5% instead of the 8% of
primary memory noted above. Integrating the sector group VIT and file map
caches takes advantage of the logical locality of reference implicit in file structure.
In this way, whenever a sector can be directly referenced, by virtue of its file map

being in the cache, its VT also is present, improving the sector group V1T cache hit

182

An Encrypted Storage Approach

rate and simplifying the lookup procedure for sector group VTT entries! ‘The only
drawback to this approach is that the volume VTT becomes larger (about 50%) since
it covers more data (file maps as well as level 3 VT5s), and thus the volume VI'T

cache grows or its percentage coverage decreases.

4.4.3 Performance, Robustness and Storagc Utilization Issues

It is now appropriate to evaluate the impact of these secondary storage protection
measures on robustness, storage utilization and performance. 1n secondary storage
five types of sectors are distinguishable with respect to their impact on system
robustness: reloadable files and catalogs, non-reloadable files (including the archival
VTT update file) and their catalog entries, sector group VI'Ts, volume VITs and the
master volume VTT. The first type is present in all systems, the next arises from
encrypted archival storage sccurity measures and the last three support encrypted
secondary storage. Thus the question is how damage to the Jast three type of sectors
affects the other sector types, in particular how it affects non-reloadable files. A
rcasonable goal is to prevent the loss of any single scctor from causing an
irrecoverable loss of data, i.e., loss of a non-reloadable file or its catalog entries.
Damage to a sector group VT sector results in loss of the 128 sectors covered by it.
This may include ordinary files, catalogs and non-rcloadable files. To reduce the
likelihood of losing a non-reloadable file, the replicated non-reloadable file sectors
and catalog entries should be covered by different sector group VIT sectors.
Integration of the level 3 VT's with file maps makes this casier because of the

relationship between files and level 3 VT sectors.

Damage to a volume VTT sector results in the oss of 128 sectors of sector group
VTT, or of file maps and level 3 Vs, and, transitively, of 16,384 file and catalog
sectors. This is a significant foss of information and makes it difficult 1o guarantee

that the replicated copies of a non-reloadable file and its catalog cntries are not

183

An Encrypled Storage Approach

covered by a single volume VI'T sector. Since only a few sectors (1-64) are devoted
to a volume VI on cach volume and since 170 on these sectors is relatively
infrequent, it s feasible to replicate these sectors on cach volume. A similar
argument apphes to the master volume VTT, which is both smaller and more
important in its coverage. This replication requires slightly larger master volume
VTT entries (to contain the addresses of both volume VTTs on cach volume) and
more non-volatile memory in the TRM (for the dual master volume VIT
addresses), but these are very small increases in storage utilization, These added
precautions yicld a sccondary storage system in which no single sector fatlure can

result in an wrrecoverable loss of data.

These protection measures have only a very slight effect on sccondary storage
utilization. Together, the space occupied by cach scctor group VIT (or its
integrated file map alternative), volume VT (including backup copy) «nd the per
sector AICFs amounts to about 2% of a formatted volume. The space devoted to the
master volume VTT and its backup copy should constitute a negligible fraction
(<<1%) of the storage on a permanently mounted volume. The caches for level 3
VTs require about 3-5% of primary memory if the VI's are integrated with file maps.
The percentage of primary memory devoted o the volume VTT cache depends on
the size of memory, the capacity and number of mounted sccondary storage
volumes and the fraction of cach volume VTT required in the cache for acceptable
performance. For example, the volume VITs for two 30M-byte disks occupy about
2% of a 256 K-byte primary memory. Thus a total of about 4-7% of primary memory
may be dedicated to VTT caches. (The master volume VITT cache is a negligible

contributor to this total.)

System performance is affected in several ways by the secondary storage
protection measures. On cach Read of a file or catalog, there is a delay resulting

from the transactions required to control the secure storage inteiface (SS1), to fetch

184

Qim oo C et e
R e . . . e N ———E— Lt

An Encrypted Storage Approach

the AICF word and to decerypt the last two data words in the sector. Controlling the
SSt involves loading the sector address, volume 1D and VI to form the IV, and
loading the primary memory sector frame address and access mode (read or write)
to restrict DMA access. The bus transactions required to control the SSI can be
carried out during the accessing of the secondary storage device before the data
arrives, given the average access time of sccondary storage devices. Thus these
i transactions do not contribute to delay, they only increase bus utilization slightly.
% Morcover, the decryption of the last two data words can be overlapped with the
fetch of the AICF word so the total delay experienced is the maximum of these two

operations. For unbulfered secondary storage devices, the AICF transfer requires

greater time, but it is only about 3us for a 10 M-bit/sccond transfer rate, a negligible

(<<1%) increase in total Read time.

If level 3 VI's are not integrated with file maps, misses can occur on the sector
group VI'T cache, resulting in significant delays. Such a miss requires locating a
cache entry to flush, updating the secondary storage scctor group VI'T sector if this
cache entry has been modified (this requires a Read and a Write on the relevant
scctor group V1T sector) and performing a Read on the sector group VI'T sector
containing the required VT, Thus cither 1 or 3 extra sccondary storage operations
are required on a miss and this could noticeably degrade performance if the cache
did not achieve a high hit rate. For cxample, a 90% hit rate might result in a 20%
delay on sccondary storage 170 and a 95% hit rate yiclds a 10% dclay. This strongly
motivates the integration of level 3 VIs and file maps, since such integration
eliminates VT cache misses at this level. (The only way a file can be referenced is if
its map is in primary memory.)

Employing this integration strategy, cache misses at the volume VIT level occur
at the point when file maps are Read. For many small and medium capacity

volumes, the entire volume VTT can be cached, completely avoiding misses at this

185

An Encrypted Storage Approach

fevel. Even if caching of whole volume VTTs is impractical, the volume VI'T cache

should accommodate a very large percentage of the volume VTT, achicving a very

high hit rate and minimizing the delays due to misses. Only in the case of large

volumes is there likely to be any significant delay due to volume VTT cache misses.

This suggests that very large volumes may best be handled by dividing them into
multiple virrual volumes like the mini-disks employed by VM/370. The time
required to fetch the master volume VITT entry for a volume when it is mounted is
easily absorbed in the manual mounting process. 1t is very difficult to estimate the

performance impact of the additional secondary storage 1/0 required when a VIT

flush operation is undertaken, especially since the frequency of such operations is
application- dependent. However it scems reasonable 1o assume that such

operations are not so frequent as to significantly affect performance

In the interest of improved performance and enhanced robustness, some bubble
memory storage can be included within the TRM. The eatire master volume VI'T
and the archival VTT update file can reside in this storage, eliminating the need for
a pennanently mounted volume containing these tables. Moreover, the complete
volume VTTs and scctor group VTTs for several mounted volumes can be cached in
such storage. This would eliminate secondary storage transfers related to VITT
management except when a volume is initially mounted and before it is demounted.
Bubble memory access time is fast enough to fetch level 3 Vs from this cache
instead of from primary memory (for non-bubble memory secondary storage
devices). ‘This configuration option is in no way essential to the design presented
above, but the availability of high density (4 M-bit) bubble memory chips makes it a

feasible means of enhancing system performance and reliability.

186

An Encrypted Storage Approach

4.4.4 A Note on the Size of Secondary Storage VTs

Throughout this section the VTs have been described as 32-bit quantities. This
distinguishes about 4.3 billion versions of a sector. For a data or catalog sector, a
maximum rate for write-backs is probably on the order of 1 every 10 ms for a disk
(assuming a transfer rate of about 10M bits/s, an average latency of about 9 ms and
some system overhead). At this rate the VT of a single scector could be exhausted
(wrap around) in about 1.36 years of continuous write-backs of that one sector. This
rate of use is obviously much greater than would be expected in normal operation,
perhaps by an order of magnitude, yet it is difficult 1o estimate a reasonable write-
back rate. Thus some provision should be made to accommodate the possibility that
a VI will be exhausted in the lifetime of a secondary storage volume. The method
should provide for an orderly transition that allows the data recorded on the volume

to be used as though nothing special had happened.

The proposed method invelves two additions to master volume VTT entries and a
new value to be held in non-volatile memory in the TRM. The master volume VIT
additions consist of a field to track the maximum value attained by any (data sector)
VT on the volume and another field to provide a volume UID used only for
cryptographic purposes. The new value held in the TRM is a global counter used to
generate these volume UIDs. The UIDs are used in forming the 1Vs employed in
cryptographically transforming sectors on the volume, instead of simply using the
logical volume 1D described earlier. When a new volumie is registered with the
system the global counter no’ed above is incremented to generate a UID for that
volume, When a threshold is reached on the per-volume, maximum VT value
(indicating that a V'T on the volume may soon be exhausted), the global counter is
again incremented and the client is notified that the volume must be copied to a new
volume. This new volume will be assigned the same fogical volume 10 used for
addressing, but 1t will have a different volume UID. (The old volume later can be

recycled into a new volume using this procedure.)

187

et e

An Encrypted Storage Approach

In copying the old volume to the new volume, cach sector is re-encrypted using
the IV formed from the new volume UID, the sector address, and a re-initialized

sector V1. The volume UID field in the master volume VTT entry for the new

volume is updated after the copy opcration is complete and has been checked. The
04-bit 1V used throughout this chapter is divided into four fields here. Two bits are
used to distinguish among the four storage unit types: transfer units, archival units,
sectors and cache lines (see section 4.3.5). Twenty bits are devoted to the sector
address (allowing up to 1M scctors on a single volume) and 32 bits arc devoted to
the sector version tag. This leaves 12 bits for the volume UID, supporting over 2K
volume versions over the lifetime of the system. Since it was noted above that it
would take about a year to exhaust the sector VT for a single volume at a maximum

rate, this should prove to be an adequiate number of volume versions!

4.5 Techniques for Encrypted Primary Memory

The protection measures developed for encrypted primary memory are similar, in
many respects, to those described in section 4.4 for sccondary storage. The integrity,
authenticity and timeliness constraints for encrypted primary memory are exactly
those stated in section 4.1 and imposed at the secondary storage level. In primary
memory the storage units are cache lines and the 1Ds are the primary memory
addresses of these lines. (It will become clear in this section why individual words
are too small to be treated as storage units at this level.) Using the model developed
in section 4.2, modifications to a storage unit are cffected by a Write of the entire
unit. Thus only write-back caches are applicable here, since write-through caches
cffect modifications through partial updates of cache lines. When a storage unit is
transferred from T&A storage to secondary storage, it is transformed from the T&A
representation to the sccondary storage representation. The transfer or archival

storage units is decrypted, its AICF is checked, it is divided into sectors and re-

188

2 el s

An Enenyvpred Storage Approach

enerypted with an AICE for cach sector, and the relevant secondary storage VI
entries are updated. The inverse of this tansformation takes place when files are

archived.

Analogous procedures take place when an encrypted sector from secondary
storage 15 transferred o primary memory and transformed into encrypted cache
lines or vice versa, Configurations such as SYSTEM H provide a natural point, the
bus coupler, for performing these transformations, whereas configurations such as
SYSTEM G are unsuitable since they provide unmediated access (by DMA devices)
to primary memory. Adopting the former configuration, there are two secure
storage interfaces (SS1s) in the TRM: one interfacing to the 170 bus and the other to
the memory bus. The 170 bus SSI controls Read and Write operations on T&A and
secondary storage units and restricts access to primary memory by devices on that
bus, whercas the memory bus SSI manages these operations for primary memory.
For reasons of design simplicity, all data in primary memory is encrypted, including
data stored and fetched by non-secure DMA devices under the control of the 170
bus SSI.

The VTT for encrypted primary memory is implicitly addressed by 1D and it
contains one entry for cach cache line in primary memory, Since, in configurations
such as SYSTEM I, there is essentially no storage within a TRM, a hicrarchic VI'T
structure and VTT caching may be appropriate here, too. Despite these many
similaritics to encrypted secondary storage, there are several aspects of encrypted
primary memory that distinguish it and which warrant special consideration. For
example, storage units (cache lines) are so small that the space devoted to VTs and
AICFs constitutes a significant fraction of the storage at this level. Special efforts
are required to reduce this overhead to acceptable levels. Also transfers of cache
lines across the TRM boundary (through the memory bus SS1 must take place at

very high speeds and deliver the requested data with minimal additional delay. To

189

An Encrypted Storage Appioach

mect these stringent performance constraints, special care is required in the selection
of cryptographic technigues for concea'ment and detection of modification. The
following sections address these problems in describing encrypted primary memory

techniques in detail.

4.5.1 Downsizing and Storage of EDCs

The EDCs (AICFs) and VTs employed for T&A and secondary storage are 32-bit
fields. (T'hroughout this section and the next the term £DC will be used generically,
encompassing AICFs and CEDCs as well as conventional EDCs.) The space
devoted to EDCs, VTs and various auxiliary data structures, e.g., T&A storage unit
headers, amount to less than 2% of the space occupicd by the storage units being
protected (even less for most T&A units). Cache lines for the systems of interest are
only 16 or 32 bytes long, so 32-bit EDCs and VTs would require primary memory to
grow by 25-50% to accommodate these fields! Although the per-bit cost of memory
is declining rapidly, the storage overhead for VTs and EDCs would unacceptably
increase system cost in most cases. This overhead can be reduced only through the
use of smaller fields for the EDC and VT, e.g., cutting these ficlds in hailf. (The
alternative of larger cache lines is rejected since the proposed 32-byte cache lines are
alrcady quite large for these small systems.) In the encrypted bus context it was
suggested that a 16-bit EDC might be adequate for most applications and the same
argument can be applied here. With such a small EDC, it is necessary to limit
automatic retries when an error is encountered and to establish an error threshold
which, if reached, causes the system to shut down and requires intervention by the

vendor, as proposed in section 3.6.3.

It may appear that the adoption of a 16-bit (halfword) EDC for cache lines
engenders a drastic response to errors but this response is justifiable. Note that this

FDC does not replace the error detection and correction code usually employed

190

S ey

An Enciypted Storage Approach

with solid-state memories. so only crrors that evade that code will be dealt with by
this security mechanismi. “This suggests that errors detected by this security are likely
to be the result of tampering attempts and thus warrant a severe response. With an
appropriate choice of error threshold it is unlikely that a non-malicious client will
ever encounter this response. Since encrypted primary memory, like an encrypted
bus, provides only a temporary repository for data, halting and restarting the system

in the event of an error should not result in a significant loss of data.

Once other aspect of EDC management for encrypted primary memory deserves
mention: the location of EDCs. The mapping of cache lines to primary memory
focations is very simple because the length of Tines 1s normally an integral power of
two. Any cffort o append halfword EDCs to lines would require cither a much
more complex mapping or some form of non-standard primary memory interface,
e.g., one in which the EDCs were implicitly addressed (and do not occupy a portion
of the "normal”™ primary memory address space). Since one of the motivations for
configuring systems of this sort is the ability to use "off-the-shelf™ primary memory,
this scems like a bad approach. The alternative is to group all the EDCs into a
contiguous table in primary memory and to fetch the appropriate EDC using a
separate bus transaction. This approach generates somewhat more bus traffic and
delays delivery of the EDC, but in a cache-equipped system the additional bus
traffic is not a major concern and the increased delay is not important duc to other
timing constraints (sec section 4.5.4). Thus EDCs will be collected together in a

table in primary memory.

4.5.2 Downsizing of VTs: The Cryptographic Refresh Process
Reducing the size of VTs is a more complex task. The VI must not be allowed to
wraparound under a single key lest security weaknesses result (see section 2.3). ‘The

VT for a cache linc is updated whenever a cache miss occurs that results in the

191

AD-AL04 678 MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR COMPUTE==ETC F/G 9/2
PROTECTING EXTERNALLY SUPPLIED SOFTWARE IN SMALL COMPUTERS.(U)
SEP 80 S T KENT

UNCLASSIFIED MIT/LCS-TR-255 NL

An Encrypted Storage Approach

eviction of a modified instance of that line (a dirty miss). The worst case scenario for
VT updates proceeds as follows. A modified cache line is evicted (a dirty miss);
then a clean miss occurs (no write-back) on the line just evicted and, finally, a dirty
miss occurs that evicts the line in question. This series of activities provides the
minimum time between updates to the VT associated with a single cache line. A 32-
bit VT would wraparound in several hours under this worst case scenario and for a
16-bit VT the time to cycle would be less than half a second, based on the operation
timing figures developed in section 4.5.4. Of course this worst case scenario
generates dirty misses on a single line much more frequently than one would expect
to encounter in practice, but the very short wraparound time for a 16-bit VT pos:s a

serious problem even for normal operational environments.

To avoid this problem, it is necessary to change the key used to encipher cache
lines, before a VT can wrap around, since no weakness results if the duplicate VTs
arise under different keys. Since there are 258 distinct keys for the DES, there is no
concern over running out of keys based on any practically attainable rate of key
change. Thus one key, the TRM master key, is used to protect secondary storage
units and, in some systems, T&A storage units, but a succession of random keys will
be used to protect cache lines. The transition from one cache line key to the next
must be carried out in a fashion that does not disrupt system operation nor degrade
performance. The mechanism developed for this task can be thought of as a

continuous cryptographic refresh of primary memory.

Cryptographic refresh is an activity (independent from the calculations taking
placc at the processor) directed by some control logic included in the memory bus
SSI. It uses the crypto chips in this SSI along with sonic additional registers and a
cache line buffer. Two working keys are identified in this SSI: WK . and WK).
Before the cryptographic refresh process starts, all cache lines in primary memory

are encrypted under WKI. The process begins with the generation of a (pseudo)

192

T ek . L,

An Encrypted Storage Approach

random value for WK - Aregister, which tracks the progress of the process, is set to
the address of the high‘cst numbered cache line in primary memory. The VT for this
line is retrieved from the VI, the line is fetched from princary memory and
decrypted and its EDC is fetched, decrypted and checked. Assuming no error is
detected, the line is encrypted under the next working key (using a VT of 1) and
stored in primary memory, the EDC is encrypted and stored, and the VIT is
updated to reflect the reset VI, This process continues through all of primary
memory until every cache line has been transformed, completing a pass of the

refresh. ‘Then WI([issct to WK , and the process begins again,

At any time during this process, it is possible to determine which of the two keys
held in the crypto chips should be used to encipher/decipher a cache line by
referring to the register that tracks the progress of the refresh pass. 1f the requested
cache line is the one currently being processed, it is already buffered in the SSI (in
the clear), so it is immediately available and the question of which key to use is
avoided. This refresh process operates at the lowest priority with respect to use of
the crypto chips and the memory bus, pre-empted by memory requests from the
processor or from the 170 bus, thus it should not perceptibly affect system
performance. The critical timing requirement for this process is that a refresh pass
must complete before VT wraparound occurs. Equation 4-1 cxpresses the
relationship between the mean time between cache write-backs (M7TBWB) for a
single line, the time required to refresh a cache line (7) and the amount of primary
memory (P), expressed in cache lines, that can be refreshed before a 16-bit VT
wraparound occurs. (The .9 factor arises from the observation that the memory bus
and its SSI are idle, and thus available to the refresh process, about 9% of the time

in systems configured in this fashion.)

P/T<9*29* MTBWB 41

193

An Encrypted Storage Approach

The refresh of @ cache line volves a Read of the line followed by a Write of the
relreshed line, requiring about the same time as a dirty cache miss. In the worst case
VT update scenario, the VT of a single line can be updated in about 1.5 times the
dirty miss ime (T = 1.5 * MTBWB) due to the inclusion of the clean miss between
the two dirty misses. At this rate the maximum primary memory size would be a
little over 2.3 Mbytes for 32-byte cache lines. However, as noted earlier, this
especially abusive pattern of memory references is not likely to arise in practice and
larger primary memory configurations can be supported if a mechanism is provided
to prevent wraparound in the case of an attack based on maximum rate VT
updating. To prevent a security breach, the memory bus SS! will refuse to write-
back a cache line if its VT would wrap around (simple overflow detection), halting
the system instead. Hence, in practice, very large primary memory configurations
will be supported comfortably since the A/TBWB is likely to be much longer than
the worst case figure projected above. Thus the cryptographic refresh technique
permits the use of small (16-bit) VTs without sacrificing security or degrading

performance.

4.5.3 A VTT Hierarchy and VTT Cache Management

Employing 16-bit VTs, the cache line VTT requires 6.25% of the space devoted to
cache lines, e.g., a IM-byte primary memory needs a 65538-byte VIT. This VIT
either can be contained wholly within the TRM or it can be hierarchically organized
and stored in primary memory with only a portion of it cached within the TRM.
Although this choice is analogous to that presented at the level of encrypted
sccondary storage, there are some important diffcrences. For example, if the VTT is
TRM-rcsident, it probably will be stored using primary memory chips since high
speed (cache) memory chips offer only a slight overall performance advantage. But

if a VT cache is employed, the higher spced chips may be required in the TRM to

194

e - AR, et o T VAT T Sy AP T EV DI R T IAMAIAs Urnd T W M R g ey

An Encrypted Storage Approach

offset the added delays imposed by the cache lookup procedure. Morcover, the
quantity of primary memory that is attached to a system is often more tightly
bounded than the number of secondary storage volumes that may be registered with
a system, making it feasible to construct a TRM with a VTT large cnough to cover a
likely range of primary memory configurations. Finally, the complexity of the
control logic and the size of the auxiliary storage needed for the management of the
VTT cache also motivate incorporation of the whole VIT in the TRM. To
understand the tradeofTs involved, it is necessary to examine the details of managing

a hierarchie VT and its cache versus a TRM-resident VTT.

The organization and management of a TRM-resident VIT is trivial. Storage is

provided so that cach cache line in primary memory has a corresponding 16-bit VT,

indexed implicitly by the cache line address. A lookup of a VT is accomplished in
one access to this table and should require about two cycles: one cycle for memory
access and one cycle for (round-trip) transport within the TRM. A store into the

VIT of an updated VT is accomplished similarly and in the same amount of time.

The cryptographic refresh process interacts smoothly with this arrangement. The
disadvantages of this scheme are the increase in TRM size and complexity due to
the inclusion of the memory chips for the VI'T and the constraint placed on main
memory configurations by the size of this VIT. If 64K-bit memory chips are j
employed, then a set of 9 (parity included) will support up to a IM-byte primary
memory. I 256K-bit chips are employed then a similar chip set will support up toa

4M-byte primary memory configuration.

If the VTT is not wholly TRM-resident, a simple, two-level hicrarchy will be
employed as part of a VT'T encachement scheme. 'The bottom level of the hierarchy
consists of the V1T divided into cache line-sized picces and the top level (root)
consists of VTs for these VTT lines. The VTT root table is permanently resident in
the TRM along with the VTT cache and 'lhc VTT cache lookup table. This last table

195

————

An Encrypted Storage Approach

is used to determine if the VT for a requested cache line is in the VTT cache and, if

s0, to focate that VT. Each VT in the VIT root tuble covers a cache line of Vs

which in turn covers 16 data cache lings, so the VI root occupies space equal to
2% of primary memory. The VTT cache contains one line for every line in the data
cache, 10 accommodate a worst case situation in which each line in the data cache is
covered by a different VTT cache line, plus a couple of additional entrics for reasons
explained later. (Note that entries in the VIT cache do not correspond directly to
lines in the data cache since one VTT cache entry could cover up to 16 lines in the
data cache.) Entries in the VTT cache are 32-byte lines, plus a modified bit, an in-use
bit and a reference count for use by the replacement algorithm. This the VIT cache

is roughly the same size as the data cache (about 3% larger).

‘the VITT cache lookup table contains one entry for each block of 16 data cache
lines in primary memory, i.¢, the set of data lines covered by a VIT line. If the VT
for a data cache line is in the VTT cache, the corresponding fookup table entry
contains the index of the containing VI'T cache line, otherwise the entry is marked
as empty. This table is about half the size of the VIT root table since the unit of

coverage is the same and the VTT cache indices are about half the size of VTs. A

likely size for the data cache is 8 Kbytes. Using 32-byte lines, a total of 256 lines fit
in this cache, yielding a cache index size (for VI'T cache fookup table entries) of 8
bits and a reference count (for VTT cache entries) of 8 bits. Thus, in total, the tables
employed in the VTT caching scheme amount to about .4% of primary memory for
the VTT root table and the VTT cache lookup table, and about 103% of the data
cache for the VTT cache. For example, a IM-byte primary memory system requires
a total of about 12 Kbytes of additional storage within the TRM to hold the various
tables and the VTT cache, compared to the 64-Kbyte VTT that would migrate into
the TRM if caching were not employed. For a 2-Mbyte system, the figures are
about 16K bytes versus 128 Kbytes.

An Encrypted Storage Approach

The VTT cache operates as follows. When a (clean) data cache miss occurs, the
VT for the requested cache line must be retrieved in order to decrypt this line. The
VTT cache lookup table is checked to see if the required VT is present in the VL
cache. If the VT is present, the lookup table entry and the low order bits of the
address of the requested cache line are used to index into the VIT cache. There the
required VT is retrieved and the reference count for that VTT cache line is
incremented. 1f the data cache miss was dirty (implying a write-back), the same
procedure is followed so that the requested data line can be Read first, then the VT
for the evicted line is retrieved as above, the reference count of the containing VI'T
cache line is decremented and the modified bit is set. (The VT for the evicted line is
always present in the VT cache.) If the VT for the requested data line is not present,
a VTT cache miss occurs. This miss must be processed before the data cache miss.
Processing of a VTT cache miss is the same as for a data cache miss with the
exception of the replacement mechanism.

The reference count associated with each VTT cache line reflects the number of
data cache lines covered by it, and the in-use bit indicates if the entry is empty or
occupied. Scanning of the VTT cache to free lines can take place cither on a
demand basis (when a VTT cache miss occurs) or as a background activity like
cryptographic refresh. Lines in the VTT cache with a reference count of zero are
cligible for replacement and, if unmodificd, are marked as empty and ready for
immediate reuse. Modified lines with a zero reference count are evicted, updating
the VT entry in the root table, and then marked as empty. The two extra lines in the
VTT cache noted earlier are included to guarantee the availability of at least one
empty VTT cache line even in the worst case VIT occupancy scenario (since these
lines can have no counterparts in the data cache). Onc of these lines is used by the
cryptographic refresh process to hold the VTT line covering data fines currently
being processed. Using this arrangement the refresh process accesses the VTT in the

same way as the data cache. Even the VTT is refreshed in the usual way, resctting

the root table entrics as each line of the VTT is refreshed.

197

s A

An Encrypted Storuge Approach

Thus a data cache miss that generates a VTT cache miss experiences an added
delay that includes the time it takes to locate a free or frecable VITT cache entry plus
a Read or a Read and a Write, for a clean or dirty V1T cache miss respectively. This
added delay could casily increase the time required to satisfy a data cache miss by a
factor of 3 or more. Hence differences in performance between a TRM-restdent
VIT design and a VTT cache design spring from two sources: the extra fookup
associated with cach data cache miss (to determine if the required V1 is in the VITT
cache and to ascertain its location if present) and the added delays resulting from
VTT cache misses. The extra lookup step results in an increase of about 11-27% in
effective memory access on a Read, versus 8-18% for a TRM-resident VTT,
assuming primary memory chips are used for the VIT cache and tables or the
resident VIT. Use of cache memory chips for the VIT cache and tables would
cqualize this difference between the two designs, based on a twofold access time

improvement as a result of using the faster memory chips.

Since the VTT cache represents a relatively large percentage of the VITT for most
systems (from 50% for a 256K-byte system to 12.5% for a 1M-byte syétcm), its hit
rate should be very high (on the order of 98% or more) and the added delays on
VTT cache misses should constitute a negligible increase in cffective memory access
time. Thus the TRM-resident VTT offers design simplicity and good performance
at the expense of a larger TRM, whereas the VTT cache engenders a complex design
and reduced performance but a more compact TRM. Considering the complexity
of the control logic for the VTT cache, it is not clear where above the 128K-byte
primary memory size the breakeven point in TRM size lies between the two designs,
cspecially if tess dense high speed memory chips are used to improve performance
of the VTT cache design. Thus the choice between a TRM-resident or encached
VTT is not clear. The following descriptions of encrypted primary memory /0
assume the existence of a TRM-resident VTT to simplify the discussion. However,

the differences that would result if the encached VTT design were adopted are

noted and timing for the encached VTT design arc provided in parentheses.
198

e o

m

An Encrypted Storage Approach {

4.5.4 Encrypticn and EDC Calculation for Cache Lines

The cryptographic methods employed for T&A and sccondary storage are not

suitable for encrypted primary memory. In most computer systems the fetch of a
cache line begins with the requested word (doubleword), which may not be the
"first” word of the line, in order to minimize the delay associated with a cache miss.
Any cryptographic method employing chaining imposes an ordering on the
decryption of data and this is incompatible with the mode of cache operation cited
above. Morcover, the minimum S-cycle delay imposed by block mode decryption is !
at odds with this low-delay approach to satisfying cache misses. This suggests that
the stream cryptographic method employed in the cncfyptcd bus approach may be {
appropriate here. For encrypted primary memory, the cryptographic bit stream will
be based on the IV formed from the cache line VT and the primary memory
address, rather than on a counter and bit stream ID used in the encrypted bus
approach. (Combined, the VT and address contribute about 36 bits to the 64-bit 1V
with the remaining 28 bits supplied by a fixed, per-TRM constant, just as in
secondary and T&A storage.) This choice of 1V limits pre-computation lead time
since the bit stream cannot be calculated until the address and VT of the cache line
are known, but the resulting delay is still better than that available through block

modes.

This stream cryptographic method provides no propagation as an aid in detecting

modification, so a separatc EDC must be calculated. In the encrypted bus approach,
a shortened (5 round) DES calculation was performed on the data and its address
and the resulting CEDC was concealed for transmission under strcam encryption.
In the encrypted primary memory context, the doublewords that comprise a cache
line are processed using the shortened DES calculation to yield four, 64-bit,
‘[preliminary CEDCs. These preliminary CEDCs must be combined to yicld a 16-bit
final CEDC that detects not only modification of individual doublewords but also 3

199

B gt NP SV O

—

An Encrypted Storage Approach

positional modification on doubleword boundaries, i.c.. permutations of the
doublewords in the line. This requirement is met by selecting 16 bits from each
preliminary CEDC, concatenating them in an order based on positions of the
doublewords in the cache line and processing this 64-bit quantity through a
shortened DES. The finul CEDC consists of 16 bits selected from this last
processing step. This CEDC is concealed in the CEDC table in primary memory
under stream encryption using the address of the CEDC and the cache line VT as an
AR

It is instructive to note why this particular method was chosen to caleulate

CEDCs for cache lines. The final CEDC could have been formed by chaining

et —————— -

together the CEDC values from the cache lines, as was done in the aggregare secure

transactions described in section 3.4.1. ‘That method involves one (shortened) crypto
operation per doubleword, four for the cight-word lines used here, and thus one
might expect improved pecformance since the method proposed here requires five
(shortened) crypto operations. However, on a Read of a cache line, the words tn
that line are fetched in an order determined by which word caused the miss. If the
CEDC calculation was based on the chaining method used carlier, the calculation
could not even begin until the first word of the cache line arrived. The CEDC
calculation method adopied here is independent of the order of arrival of the words
in the line and thus does not encounter delays o this sort. These considerations

guided the choice of CEDC calculation methods.

The preceding descriptions of encryption and CEDC calculation are utilized in
Read and Write opcrations in the following fashion. First consider a Read
operation, i.c.. the response 10 a cache miss or the first step in the refresh of a cache
line, as depicted in Figure 4-6. The operation begins with transmission of the
address for the doubleword containing the requested data (T1) and the lookup of

the VT associated with the cache line containing that doubleword (A1), In an

200

An Encrypted Storage Approach

address data data data data conf

\ oIROIRO “ol :‘ _Le 'i

ff; RIRS
7 i

o (2 @:ﬁﬁif:@@@@ ‘

PMem (%) (s) (a) (ns)

\

Figure 4-6: Event Graph for a Read of an Encrypted Cache Line

encached VTT design two lookups take place and, to minimize delay, the operation i

proceeds under the ussumption that the required VT is in the cache. Ifa VT'T cache
miss occurs (detected after the first lookup), the request to primary memory for the
data line is aborted and the VTT miss is processed. The fetching and transfer of the
cache line begins with the doubleword containing the requcested data and proceeds
through increasing addresses, modulo the cache line length (A2-A9,12-T9).

Cryptographic bit streams for deciphering the cache line are generated using the

201

An Encrypted Storage Approach

cache fine VT and the addresses of the doublewords in the line (C1-C4). These bit
streams are combined (via modulo 2 additon) with the doublewords transferred

from primary memory to effect decry ption (X1-X4).

Fach deerypted doubleword is delivered 1o the cache and delivered for the
preliminany CEDC calculations (E1-F4) and the result is processed to yield the final
CEDC (ES) as described above. The stored CEDC is retrieved using a normal (not
extended) bus transaction directed at the appropriate CEDC table location
(T10,A10.T11). The bit stream for the CEDC is generated using the VI and the
word address of the CEDC (C5) and is combined with the halfword containing the
CEDC (XS5). This decrypted quantity is compared against the calculated final

CEDC 1o verify the authenticity, integrity and timeliness of the retrieved cache line.

Figure 4-7 presents the timing diagram for a Read of an encrypted cache line.
Crypto devices 1-4 calculate the cryptographic bit stream and the preliminary
CEDC for the cache doublewords and device 5 calculates the final CEDC and
generates the bit stream to conceal this CEDC. The staggering of these processing
steps may be used to reduce simultancous demand on internal busses; it is
esthetically appealing and is consistent with the precedence graph. In this diagram
the fetch of the VT is accorded two cycles but, if a VTT cache is employed, the VT
fetch time would increase o four cycles, even on a VT cache hit.!2 The requested
data is available 7 (9) cycles after the operation begins, the CEDC is available after
14 (16) cycles and the bus is busy for 13 cycles. ‘The delay on data delivery is 4 (6)
cycles greater than in a standard system or a comparable encrypted bus
configuration and the CEDC dclivery delay is 9 (11) cycles greater than in such an

encrypted bus design. Bus utilization increases by 30% (3 cycles) over a comparably

12'l'hc parcnthesized figures threughout the remainder of this section indicate the timing for
systems with a V'I'T cache, assuming a hit on that cache.

202

T —————

i
!
i
i

An Encrypted Storage Approach

(DOUBLEWORDS)
A DDDOD c
D A A A A o
D T 1T 71T N
R A A A A F
ol | | Co
Cache # : i ‘Ji 1| _,__L_?__
I BRI }ES ‘
Crypto5 — l : e ;
Tl
Crypt04 '*T R } f f
e el
Crypto3 + o ——] J
=
Crypto2 — T -
; C‘(((Et
Crypto1 I]
R [1 T |t
Tt 7211374 |75 176 17 78 179 /10 1
Bus —
o lnal b 3
2] A4 As| |as 10
P-Mem1 ! . l , =
P-Mem2 B ‘]AS! Asl A7 (AQ l B
SRREEEE |

012345678901 234
Figure 4-7: Timing Diagram for a Read of an Encrypted Cache Line

configured standard system but, since utilization s very fow in these systems, this
increase is significant only if it delays the inttiation of another Read. Since the mean
time between misses is exp ed to be on the order of 50-125 cycles (95-98% hit rate

and average instruction length of 2.5 cycles), this delay probably has a negligible 1

impact on system performance.

203

An Fncrypted Storage Approach
edc

addsess data data data data ack ack

Al

\\

IR KN

Figure 4-8: Event Graph for a Cache Line Write

Now consider a Write operation, i.e., the eviction of a modified cachc line or part
of a cache linc refresh, as dcpicte;l in Figurc 4-8. When a cache miss results in the
eviction of a modified line the evicted line is buffered, the requested line is Read
and then the Write of the evicted line takes place. This strategy results in all cache

misses delivering the requested data after the same delay, even if a write-back is

204

il i,

An Encrypted Storage Approach

required, unless buffer space for evicted lines is exhausted [6]. The operation begins
with the lookup and update of the VT for the evicted cache line (Al). This VI is
combined with the doubleword addresses of the line and used to gencerate
cryptographic bit streams (C1-CS) for concealing the data and the CEDC. ‘The
doublewords (in increasing order) are combined with the bit strecams (X1-X4),
transmitted and stored in the appropriate memory locations (T1-19, A2-A9) and
acknowledged (T10). The preliminary CEDCs are calculated on these doublewords
(E1-F4) and the results are used to calcutate the final CEDC (ES) as described
above, The final CEDC is concealed by combining it with 16-bits from ('S, and the
resulting halfword is transmitted and stored in the CEDC table (T'11-T12,A 10).13

Figure 4-9 presents the timing diagram for a Write of an encrypted cache line.
The crypto unit utilization is the same as for Read opcerations. This operation
requires 19 (21) cycles to complete and the bus is busy during the last 13 of those
cycles. This operation is 9 (11) cycles longer than a cache line write in a standard
system and 6 (8) longer than in a comparable encrypted bus system. Bus utilization
is 30% greater than for a standard system and about 8% greater than for an
encrypted bus system. (These figures assume the encrypted bus system incorporates
separate bus lines for CEDC transmission, whereas the encrypted storage design
employs a standard system bus.) As long as Write operations are adequately
buffered, the added delay should not adversely affect performance. Again, given
the very low bus utilization characteristics of these systems and the large mean time
between misses, the additional bus cycles consumed for these operations should not
significantly affect performance. Since most Write operations result from cvictions

triggered by Read operations, Figure 4-10 shows how the two operations mesh when

”'lhcrc is a potential problem here in that only the halfword containing the CEDC for the
affected cache line should be maodified. If the primary memory does not support this form of partial
word modification, then the whole word must be fetched, the relevant halfword modificd and the
whole word stored, increasing bus utilization and the cffective cycle time for the Write operation.

205

An Encrypted Storage Approach

(DOUBLEWORDS)
A DDDOD (EDC)
D AAAA A A
D TTTT c c
R AAAA K K
| P L |
Cache L ; !%—ﬁ—é 4—
1 | lesi | ES
Crypto5 s] I
f ca ‘ E4
Crypto4 1 : |
i c3 l ' E3
Crypto3 ’
| c2 E2
Crypto2 ‘ !
| C': £1
Crypto1
Al |
VTT ; + - I i
I | - TTTT
| 71172113174 (15 (16 177 '8 {T9 110 11 |12 13
Bus — 1 ‘
) | ’ | ’ A
; L ola2t laal e |as 10
P-Mem1 . 1' |
P-Mem2 | | ’ AS A7\ A9
-vMem ’
- T HERN
01234567890123456789

Figure 4-9: Timing Diagram for a Write of an Encrypted Cache Line

combincd. Note that the total time for the combined operations is less than the sum

of the independent operations due to overlap in processing steps.

206

An Encrypted Storage Approach

(DOUBLEWORDS) (DOUBLEWORDS)
A DD DD CoODODOD (£DC)
D A A A A O A A AA A A
D TTTT NTTTT c c
R A A AA F AAAA K K
L | L] b Ll
Cache i‘J' | ' M —+—+—T—T—+—I e
I i ! : ' I ‘
e e el el
Crypto5 |)I | == , : ’ ' , R]\'
| ' {34; P ’ 12} ! ca (: 54[,‘ o ' P
et T T T]
Crvoto3 N ‘cal || €3l | lcal E3| Lo |
r O f ;) T T
yp l | ; ; ' t i | l 1‘ i
b c2) E2] ! ic2: | E2 l | !
Crypto2 — ‘ . g
| !CI I ia{ !C1 E1
Crypto1 i . ‘ . T
vTT - al J
| I T T T
B T1, (12073 T4 715 [T6 17 T8 79110 | 11} [11!T2/T3 T4 75 [76!17 18 79110 [11 12 13
us ' ; !
A ‘ l ; . [A] |
P-Mem1 A2| (A4l (A6| A8 10 A2l |A4 !Aei AB| ! 0]
-Mem , .
] s| |
'A3] iAs| a7 a9 A3l las| la7| |a9
Pem2 T |] |

01234567890123456789012345637

Figure 4-10: Timing Diagram for a Combined Read-Write Operation

An Encrypted Storage Approach

As in the encrypted bus approach, there is a choice between delivering requested
data immediately or deferring delivery until the CEDC is checked. However, in ihis
case the CEDC is associated with the cntire cache line, not individual words, and

thus cannot be checked until the entire line, and the CEDC, have been transferred

and decrypted. The increase in apparent memory access time associated with
deferred delivery amounts to only 4-9% (for cache hit ratios of 98% and 95%
respectively) for the encrypted bus approach, but here it would be anywhere from
20-50%. Immediate delivery in the encrypted storage approach results in an
effective memory access time increase in the range of 8-18% (11-27% for a VIT
cache design using primary memory chips). These figures strongly motivate
adoption of the strategy of delivering duta immediately and checking the CEDC on
adelayed basis. [f a potential sccurity violation (a CEDC mismatch) is detected on a
fetched cache line, the system halts, the violation counter is incremented and the
system must be re-initialized. (Becavse the delay before the CEDC check is much
longer here, it would be much harder for a processor to "back out” in response to
the violation.) This is a drastic response but it appears justified as only deliberate

attempts to violate the protection mechanisms are likely to trigger it.

4.6 Conclusions

The techniques developed in this chapter enable a computer system constructed
using a single TRM and off-the-shelf storage devices outside that TRM to protect
externally supplied software from disclosure and undetected modification. Several
important concepts were introduced in this chapter to achieve this goal. Two
concepts are fundamental to the protection mechanisms employed at all levels of
storage. The first is the use of version tags (VTs) to form version-differentiated
names for cryptographically transforming storage units. The second is the use of a

protected version tag table to provide a basis for verifying the timeliness of storage ;

208 |

y

g W Pty Y

An Encrypted Storage Approach

units on Read operations. For transfer and archival storage, the archival VIT and
its associated update table provide a robust mechanism for enforcing reloading
constraints for most-recent-only and non-reloadable files. ‘The four-level hicrarchic
decomposition of the sccondary storage VTT and appropriate caching of portions of
this hicrarchy makes the use of encrypted secondary storage feasible. Finally,
cryptographic refresh for encrypted primary memory permits the use of small VTs
with cache lines, significantly reducing the amount of memory devoted to security

overhead.

The encrypted storage approach offers a number of advantages over the
encrypted bus approach, especially in configurations such as SYSTEM I and
SYSTEM F. Only with the adoption of encrypted storage techniques does secure
T&A storage and demountable secondary storage become really practical. Off-the-
shelf, demountable ntagnetic media are supported dircctly in this approach for these
levels of storage. The only special requirement for these media arises in the
secondary storage context where sector size n'mst be increased slightly. However,
most media are readily formatted to accommodate the larger sector size, so this is
not a problem in most cases. The storage overhead for EDCs and VTs is small for
both T&A and sccondary storage, so this penalty should be quite acceptable.
Management of the archival VTT is simple and should not perceptibly affect
performance. The secondary storage VT'T hierarchy requires more sophisticated
management but still should not degrade system performance noticeably if primary

memory is expanded to accommodate the V1T caches.

These sccurity measures for T&A and secondary storage provide reduced cost
and increased flexibility with only minor storage and performance overhead
compared to compurable encrypted bus measures. The only significant potential
drawback associated with these encrypted storage techniques is the loss of

transparency, i.e., these techniques do require significant participation by the TRM

209

An Encrypted Storage Approach

operating system. However, this disadvantage scems small compared to the
advantages offered by this approach. At the encrypted primary memory level the
storage overhead and performance degradation are more severe and the complexity
of the TRM increases significantly. The cost of SYSTEM I in the encrypted
primary memory approach may be comparable to that of SYSTEM D in the
encrypted bus design due 10 this storage overhead and increased complexity, so the
choice in this case is not so clear. Of course, SYSTEM 11 does offer greater
flexibility in primary memory configuration and maintenance, but the comparison
between the two configurations is complex. Perhaps a more important question is
whether cither SYSTEM D or SYSTEM I is preferable to SYSTEM H.

A major motivation for the adoption of SYSTEM 11 over SYSTEM F is the
reduced size and cost, and presumably increased reliability, of the TRM in the
former system. Of course there are other reasons for employing encrypted primary
memory, e.g., increased fiexibility in configuring and maintaining primary memory,
but these are secondary in many applications. However, moving primary memory
out of the TRM requires the addition of another SSI involving five crypto chips and
control logic to support cryptographic refresh. It requires storage within the TRM
either for the whole encrypted primary memory VTT or for the VITT cache and
auxiliary tables and not inconsiderable control logic to manage the cache. Finally,
this configuration requires the inclusion of a data cache and control logic which

might not otherwise be required to achieve acceptable performance.

Since the crypto chips are very large compared to memory chips and the control
logic chips also take up considerable space, the TRM space savings achieved by
removing primary memory must be carcfully analyzed. For many applications very
large primary memorics are not required and the ability to extend primary memory
while retaining the same processor is not critical. For thesc applications a TRM

configured with internal primary memory and encrypted secondary storage may be

An Encrypted Storage Approach

preferable as the TRM would not be any farger and would probably be more
rehiable than a TRM for an encrypted primary memory conliguration as described
in section L5, The amount of primary memory that can be accommodated in the
void left by the security hardware and data cache depends on the fevel of integration
employved for the control logic and crypto chips and the density of primary memory
chips. Using 256-Kbit primary memory chips and custom VIS for the control logic
and crypto chips, one cowdd probably it 256-512 Kbytes of primary memory i this

void.

Finally, one can imagine hybrid designs coploving a combination of the
encrypted bus and encrypted storage approaches, Due o the difficuly of TRM-
packaging of demountable media, T&A and secondary storage are probably better
implemented using encrypted storage techniques. Yet, one might wish to conceal
addresses on processor-generated references o primary memory (Lo nunimize traffic
analysis) and that is wvailable only through the use of encryvpted bus technigues.
Thus, one might design a dual bus system in which primary memory is TRM-
packaged and encrypted bus techniques are employed 1o protect traffic on the
memory bus while encrypted storage techniques are used to protect data in
sccondary and T&A storage devices on the 170 bus. However, the cost of providing
separate, TRM-packaged primary memory (as in SYSTEM D) is probably cven
greater than providing encrypted primary memory (as in SYSTEN), since about
twice as many crypto chips are required in the hybrid system. Thus, as in the

preceding analysis, it is probably more feasible to incorporate primary memory into

the main TRM (as in SYSTEM F) to achicve the required protection,

Chapter Five
Multi-Vendor Systems and

Client Security Requirements

Chapters 3 and 4 developed several designs that meet the sccurity requirements
of the vendors of external software, i.c., encapsulation of external software to protect
it from attacks resulting in the release or undetected modification of information.
These designs assume that all external software exceuting on the TRM-packaged
computer was supplied by a single vendor, i, the designs do not address the
problem of multi-vendor computer systems. Morcover, these designs do not address
the security requirements of the clients of external software, ie., confinement of
external software to prevent disclosure of client-supplied information to the
"outside world” and to control access of external software to computer resources not
devoted exclusively to the vendor of that software. These two problems can be
unificd by viewing the client as a vendor posscssing certain extra privileges, e.g.,
control over access to shared system resources. This chapter explores the problem
of designing systems that support client security requirements and external software
supplied by multiple vendors. It examines two approaches to solving this problem:
use of third-party supplicd TRMs equipped with sccure operating systems and

multi-TRM systems,

212

i
)
{

Multi-Vendor Systems and Client Security Requirements

5.1 Confining External Software

Since the computer systems of interest are under the direet physical control of the
clients, leakage of client-supplied information outside of the client-controlled
environment takes place only through communication with the outside world. The
primary channel for such leakage is the communication network interface. Other
channels may exist as wel, e.g., hardcopy output circulated outside the client
environment and maintenance by external vendor personnel, but these are dealt
with by procedural rather than technical security controls. Some personal and small
business computers will not have a network interface, effectively climinating this
leakage problem. However, distributed systems and many personal and small
business computers will have network interfaces and the problem of leakage will

arise.

The level of difficulty associated with preventing leakage of client-supplied
information depends on the configuration of the computer system and what use
external software makes of network communication facilitics. In order to restrict
access by external software 10 a network, the client must have direet control over the
network interface. 11 a client’s only means of controlling this interface is through a
processor and/or software provided by an wntrusted vendor, e.g., the vendor
supplying software that is to be confined, then confinement cannot be achieved.
However, a client exercising direct control over this interface can prevent or at least
minimize lcakage of his data in many circumstances. 1f external software does not
use the network as part of its normal operation, then client-controlled security
mechanisms can prevent the software from accessing the network at all. If external
software uses the network only in a very restricted fashion, then security controls

can mediate access to the network to prevent or severely restrict leakage.

213

———

Multi-Vendor Systems and Client Sceurity Requirements

5.1.1 Preventing Information Leakage in Simple Applications

Consider, for example, external software that establishes a connection to a service
that provides current stock quotations or other information based on a tightly
constrained query set. This type of external software can be confined reasonably
well since the flow of information is essentially one-way (from the service 1o the
external software). Despite the one-way nature of this sort of communication,
external software might try o leak information by signalling over covert channels,
c.g.. manipufation of connection flow control parameters, since network protocols
do involve some reverse flow of information even for one-way data transmission.
The rate at which information can be leaked in this fashion can be madce arbitrarily
low if the communication protocol is not implemented by external software but
rather is under client control. A connection-oriented data transport protocol (see
section 2.3.4) supplied and controlled by the client would be an appropriate
interface for much external software and would provide the client with control over

many covert channels (for suitably constrained network usage).

Even the task of external software re-authorization, i.e., notifying the software
that the client has paid the "rent” and thus the software should continue to operate,
can be tightly constrained so as to minimize leakage potential (thus achieving a high
degree of confinement). Simple re-authorization procedures do not require any
transmission of data from the external software to the vendor. The sofiware can
maintain a counter of the number of times it is invoked and another counter that
tracks re-authorization notices. Depending on the duration of the rental period and
the nature of the subsystem, a limit i1s cstablished as the maximum number of

invocations allowed before re-authorization.' The vendor, upon receipt of periodic

lea clock with battery backup ceuld be included in the main 'TRM, reauthorization could be
based on time (c.g., months) rather than on the number of times external sofiware was invoked by the
client.

214

Multi-Vendor Systems and Client Security Requircments

payment, issues a re-authorization notice (incorporating an encrypted form of the
re-authorization counter) to the client, who forwards it to the external sofiware. The
subsystem verifies the re-authorization notice, resets the invocation counter and
increments the re-authorization counter. More claborate re-authorization
procedures might involve transmission of usage statistics by the external software,
e.g., for billing purposes. The integrity, authenticity and timeliness of these statistics
can be ensured by covering them and the re-authorization counter with a CEDC.
This procedure minimizes leakage potential and thus should prove ucceptable to

clients.

5.1.2 Preventing Leakage in Distributed Applications

Security measures of this sort are sufficient for many of the proprictary software
applications that use network facilitics. However, in the context of distributed
systems, onc may encounter external software that engages in substantial, complex
two-way communication among copies of itself implemienting distributed
applications at the nodes in the system. Automated mediation of this sort of
communication to prevent leakage of client data is not feasible, both because of the
complexity of the message exchanges and because the transmiitted data may be
encrypted by the external software copies to meet the security requirements of
subsystem vendors. In the simplest case, clients may wish to confine external
software to preclude leakage of information outside of the distributed system user
community. This is readily accomplished since clients can superimpose their own
inter-node communication security measures (using keys available only to members
of the user community), on top of any communication security measures employed

by external software.

However, as indicated above, if clicnts require a more sophisticated sort of

confinement of external software, problems may arise. Consider, for cxample,

215

"equirements

Mudt-V endor Systems and Chent Sceurity

external software managing a distributed (but not replicated) database containing
information supplicd by various members of the distributed system user
community. Each client may place constraints on how information supplied by him
i made available to other clients, e.g., data private to cach client may be maintained
at his node and database access controls will allow him to restrict access to this data.
Fither the client can rely on the external software to enforce these controls or he can
attempt to mediate inter-node communication involving the database management
subsystem. In this situation automatic mediation is difficult at best and is
impossible i external software uses encryption o conceal inter-node
communication. Fven if inter-node communication 18 not cryptographically
concealed by the external software, c.g., the software employs cryptographic
methods only for authenticity and integrity checks, strict mediation of inter-node
communication would require duplicating the operation of the database subsystem.
Yet such duplication by the client is in direct conflict with the acquisition of external

software!

This problem worsens if clients must rely on a distributed subsystem to enforce
access control policies for data dispersed throughout the system, e.g., fully replicated
distributed databases containing sensitive client data. In this case, communication
among copics of the subsystem may be encrypted by the subsystem (to conceal the
client data transmitted between the copics), thus denying the client any opportunity
of monitoring to prevent or even detect leakage! Clients might be able to trust
external software to enforce an advertised access control policy if they, or a trusted
third party, could inspect the source code and establish its correspondence to the
exccutable subsystem installed at cach node. Client inspection of proprietary
software is not likely to be acceptable to vendors, but in the distributed system
context, such inspection may be viable when external software is supplied by
members of the user community. In the latter case, disclosure of the software within

the user community is not a major concern but protection of the data managed by

216

b

Mulu-Vendor Systems and Client Sccurity Requirements

the software must be ensured. What is required, however, is some mieans of
establishing correspondence between the inspected and installed subsystem copies
without compromising subsystem integrity and while providing for secure
communication among subsystem copies. These requirements can be met using

procedures described in the next section.

5.1.3 Controlling Access to Shared Resources

The other aspect of confinement is controlling access of external software to
computer system resources not exclusively devoted to the vendor of that software,
This security requirement is applicable only in computer systems which support
secure execution of software from multiple independent vendors, possibly including
the client himself. (In a single-vendor system all facilities are available exclusively
for the use of software provided by that vendor and any sort of confinement beyond
disconnection of the system from the network is meaningless.)) Resources to which
access may be controlled include portions of the storage hicrarchy, the terminal and
other 170 devices, e.g., the network interface. The guideline here is the principle of
least privilege employed in secure system design, i.c., a subsystem should have access

only to those resources required to carry out its designated function [29].

Access restriction of external software is important for several reasons. For
example, access controls applied to external software often simplify the information
leakage aspect of confinement since software can disclose only that information to
which it has access. External software that has no access to sensitive client
information poses no Iéakagc threat and thus doces not require the sort of network
access mediation accorded external software that does have access to such
information. If the latter software does not use the network and the former does,
the leakage problem is significantly simplified. When secondary storage is shared,

for example, software of onc vendor must be prevented from damaging software of

217

Multi-Vendor Systems and Client Sccurity Reguirements

another vendor (or of the client) and the quantity of storage consumed by external
software should be controlled. With respect to the terminal, the client must be able
to select and identify the software with which he is communicating in order to
prevent confusion that could result in violations of client access controls. Finally,
control of access to the network interface, as noted above, is the fundamental means
by which the information leakage problem is managed. Thus, controlling access of
external software to shared system resources really encompasses all aspects of

confinement.

5.2 Computer Systems Supplied by a Third-Party

One way to accommodate software supplied by multiple vendors in a single
computer system is to use one of the designs presented in Chapter 3 or 4 in
conjunction with a secure operating system, with all security relevant hardware and
software supplied by a trusted third party. The secure operating system performs
two functions: it protects external software from attacks by other software (the
security mechanisms of Chapters 3 and 4 protect against physical attacks) and it
confines software to contro! information leakage. In single-vendor systems, the level
of sccurity required of the operating system depends to a great extent on the nature
of the application software provided by the vendor. For example, external software
implementing financial applications or games require less sophisticated protection
mechanisms than external software controlling execution of client-written code on
the vendor-supplied processor. In multi-vendor systems, the operating system must
withstand programmed attacks mounted by vendor or client software in order to
provide encapsulation and confinement of cxternal software. Thus the level of

operating system security required in multi-vendor computers is relatively high.

Multi-Vendor Systems and Client Sceurity Requirements

5.2.1 Options tor Software-Enforced Encapsulation

In the extreme case, the operating system for a multi-vendor computer might
provide a fine-grained protection domain structure that supports mutually suspicious
subsystems while providing an invocation mechanism essentially equivalent to
normal procedure calls (sce [29]). Although several operating systems and machine
architectures that implement this form of sophisticated protection have been
described in the literature, few have been constructed and none are commercially
available at this time. This type of operating system and its associated hardware
support facilitics are generally quite complex, in contrast to the simplicity that tends
to characterize the computer systems of interest. Although it is conceivable that
such sophisticated hardware and software could be provided in small, multi-vendor
systems, it may not be necessary. For many applications, it is not critical that
invocation of external software be as flexible and as fast as normal procedure
invocation. For example, compilers, editors, games or financial application
packages are not invoked with very high frequency; they exccute for some time
before completion and are unlikely to make extensive use of other subsystems.
Thus a facility that supports mutually suspicious subsystems but provides a
somewhat less convenient interface than normal procedure invocation might be

appropriate in many circumstances.

A secure virtual machine monitor (VMM) [13] is much simpler to construct than a
fully general protection domain system, yet it can provide the necessary
encapsulation and confinement, albeit with less convenient invocation of external
software. A multi-vendor system can be implemented by using a VMM in which
each vendor is represented by a separate virtual machine implementing a very
simple environment for external software development and operation. The VMM

maps the system resources used by the virtual machines into physical resources. For

example, the VMM partitions physical memory among virtual machines and may

Multi-Vendor Systems and Chient Scecurity Requirements

map a sclected portion of virtual machine memory to provide data transmission
between the virtual machine and the VMM, Secondary storage may be provided by
partitioning physical disks into mini-disks that are private to virtual machines (as in
VM/370). The VMM intercepts 170 instructions and translates them so that
accesses o a mini-disk are directed to the appropriate region of a real disk.
Invocation of external software can be effected through inter-virtual machine
communication. The VMM can provide communication among virtual machines in
a varicty of ways, c.g., by simulating network connections between the virtual

machines.

To a great extent, encapsulation and confinement of external software are
achieved by the implicit isolation of virtual machines provided by the VMM. 'The
client, interacting with the VMM directly via his terminal, can act as a sort of limited
system administrator as well as the owner of a virtual machine. This provides him
with the tools necessary to control access to shared system resources, €.8., storage
and 170 devices, but he is not granted the ability to examine unencrypted data
internal to vendor virtual machines. The VMM design makes it especially easy for
the client to control secondary and T&A storage usage and access to peripherals,
since all physical devices are available to the virtual machines only through the
explicit mediation of the VMM, For example, the VMM may interpret and
translate control transactions involving DMA devices and other peripherals as a
matter of course, and access control checking is readily incorporated into these
activitics. This design even allows the client to supply software for automatic
mediation of network access in a fashion that is transparent to the vendor virtual

machincs, since the VMM mediates such access anyway.

The third-party design requires clients and vendors to trust the supplier of
security relevant hardware (TRMs) and software to provide a product that meets the

security requirements of both parties. 1t is likely that both partics will want to

220

R i

Multi-Vendor Systems and Client Security Requirements

inspect the software 1o satisfy themselves that it properly implements the
encapsulation and confinement security policies described above. The simplicity
and relatively small size of a VMM +ikes it more amenable to visual inspection and
automatic verification, and that makes its acceptance by clients and vendors more
likely. (The assumption here is that the thod party will accept disclosure of the
VMM design and code as a necessary part of his business.) Similarly, the hardware
design and the TRMs must be available for examinatior: Assuming that these
criteria can be met to the satisfaction of both parties. the major remaining question
is how to distribute external software to these computers in a fashion that meets the

security requirements of both clients and vendors.

5.2.2 Distributing External Software in the Third-Party Design

The simplest solution to the problem of distributing ¢xternal software 1s 10 make
the third-party supplier the distributor as well. Vendors could provide the third-
party supplicr with their software and he could securcly distribute it to clients,
possibly acting as a collection agent for the vendors as well. The distribution could
be carried out using any of the methods described previously using conventional
ciphers, e.g., encrypted transfer storage or secure down-line loading. This requires a
high level of trust on the part of the vendors since their software is directly available
to the third party, and the clients may be wary of this close relationship between
vendors and the presumably impartial third party. Instead. an approach based on
the use of public-key ciphers (PKCs) for external software distribution may prove
more acceptable to clients and vendors. Using public-key ciphers, it is possible to

climinate the TRM supplier from the distribution procedure, so that only the

vendor and the TRM-based computer have access to external software,

M

Multi-Vendor Systems and Client Sccurity Reguirements

The public-key cipher distribution procedure operates in the following fashion.

The third-party supplier provides a public-key cipher facility in a secure portion of

cach TRM-packaged computer system. This facility implements public-key cipher

transformations and gencrates a PKC key pair for use in the secure software

distribution procedure. After the computer is purchased, this key pair generation is

carried out in the presence of the client and some independent agent that serves as a

registrar of public keys for these third-party computers. (The third-party supplier

might serve this function and additional witnesses may be present.) The chient and

the registrar both supply random inputs to the TRM for key generation, providing

unbiased key selection, then they initiate the process. When the key pair is

generated, the secret key is held in (erasable) non-volatile storage, never to be

known outside the TRM, and the public key is output by the TRM. This public-key

is recorded by the registrar, establishing the correspondence between it, the TRM-

based computer and the client.

To distribute external software to this computer, a vendor checks with the

registrar to establish the association between the public key and the computer in

question, Using this public key, the vendor encrypts a (secret) conventional cipher

key and an identificr, gencrated by the vendor, for use in secure down-line loading

or for encrypted storage distribution. Once this initial contact has occurred, a

vendor can identify himself to the third-party supplied computer in subsequent

distribution procedures by using the same sceret conventional key and identifier.

The client interacts with the computer to establish his own subsystems in a more

direct fashion based on his direct physical control of the system, e¢.g., through

console interaction. Since the sccret key of the PKC pair is known only to the
TRM-based VMM, only the vendor and the TRM have access to software

distributed in this fashion. Of course, this procedure is meaningful only if TRM-

packaged system components are permanently sealed at the factory, i.e., not subject

to subsequent invasive maintenance procedurcs. This strongly suggests the use of

222

o --.mv -

e W . 4 e

Mulu-Vendor Systems and Client Security Requirements

an encrypted-storage design, e.g., SYSTEM G or SYSTEM H from Chapter 4, to

minimize the number of TRM-packaged components.

This software distribution procedure based on public-key ciphers meets the needs
of vendors of proprictary software for many applications. In distributed systems
employing this procedure, members of the user community can act as vendors to
exchange software in a fashion that protects the lender. However, this procedure
does not address the special problem of distributed software that must be trusted to
implement access control policies, e.g., the distributed, replicated database
subsystem described above. I such subsystems are provided as proprictary software
by a vendor, it is unlikely that inspection of the subsystem source code by the clients
will be acceptable, so at best an independent party might be brought in to certify the
correciness of such subsystems. If this certification procedure is acceptable to both
clients and vendors, the subsystems can be distributed using the procedure
described above. A vendor would associate a secret key with the subsystem copices
destined for a given distributed system, providing them with a basis for secure inter-
node communication. (The subsystem copies are identified to onc another by the
hardware UID assoctated with each computer)) If mode nodes are added to the
distributed system, the vendor can supply additional copies of the subsystem with

the same key.

5.2.3 Distributing User-Written External Software in Distributed

Systems

If the subsystem is supplicd by a member of the distributed system user
community, the problem is somewhat different. The assumptions here are that the
members of the user community will co-operate in this process and there is no
requirement to conceal the subsystem code, but the users are largely autonomous

and thus harbor some degree of mutual suspicion. Thus perspective clients

223

Multi-Vendor Systems and Client Security Requirements

(members of the user community) may inspect the code to verify that it implements
an advertised security policy. However, the user/vendor who wrote the subsystem
cannot directly distribute the subsystem since he cannot be allowed to know a secret

key embedded in the subsystem copies for secure inter-node communication. This

problem can be solved by using a third-party computer with appropriate software as
an installation server for the distributed system. This computer is a shared resource
of the distributed system user community and is operated by them co-operatively.
The installation server acts as a surrogate for user-vendors in carrying out the
subsystem distribution process in a fashion that meets the security requirements of
the user community. Readers not interested in the details of how this process is
implemented should skip to section 5.3 (page 226) for a discussion of the other

approach to realizing multi-vendor computer systems.

Figure 5-1 illustrates the flow of messages in this procedure, using an example
distributed system composed of 4 user nodes (A4-D) and an installation server node
(E). The subsystem creator, in this example, user node D, initiates the procedure by
transmitting a copy of the subsystem source code to the installation server node (step
). This transmission is secured using the secret key of the third-party computer
along with an EDC or AICF to ensure authenticity and integrity. The installation
scrver records this subsystem, assigning it a UID, and compiles the subsystem,
producing the cxecutable object module version. Included in the object module is a
secret key, generated by the scrver, which the subsystem copies can use to
communicate securely with one another. The server distributes a copy of the source
and object module versions of the subsystem to each user node (step 2); the source
code is provided for the inspection and approval of the user and the object module
is made available for immediate installation and activation of the subsystem.
(Distribution of the subsystem can be restricted to a subset of the user community

by informing the installation scrver of this subset at the time the subsystem is

delivered by its writer.)

Multi-Vendor Systems and Client Security Requirements

Node A | Node B
2 2
Node E
2 2 1
Node C Node D

Figure 5-1: Sccure Installation of a User-Written, Distributed Subsystem

Each transmitted copy of the source and object modules is transformed under the
secret key of the installation server to ensure authenticity, then under the public key
of the target user node for secrecy, and an EDC is included for integrity checking.
In order to effect these transformations, the installation server must be provided (in
a reliable fashion) with the public keys of all the user nodes. ‘The public key of the
installation server must be made available to the user nodes to allow” verification of
this transmission. (If a user node is provided with a public key that docs not
correspond to the installation server, the security of the procedure is not violated,
but the node in question will not be able to decipher and load subsystems!) Each

user node VMM, upon receipt, transformation and verification of this transmission,

Multi-Vendor Systems and Client Security Requirements

makes available the subsystem source code for user inspection. If, after examining
the source code, a user approves it, he authorizes his node VMM to install (and thus
activate) the subsystem. Uscers not wishing to participate in the subsystem merely

instruct the node VMM nor to install the subsystem.

This procedure guarantees that the installed subsystem copies are identical, that
they have been approved by the users (clients) on whose computers the copies are
exceuting, that they can communicate securely with one another and that the
subsystem writer cannot ¢circumvent this procedure, i.¢., he is bound by the
advertised access control policy embedded in the subsystem! This is a simple
procedure and, although it requires the vsers 1o exercise some care in operation of
the installation subsystem, the procedure meets the stringent security requirements
cstablished for distributed systems composed of autonomously managed nodes.
Morcover, the installation procedure can be effected incrementally, i.¢., members of
the distributed system can participate in the installation and use of subsystems at
their convenience. The introduction of a new node into the distributed system
requires registering the node with the installation server, i.e., establishing the
correspondence between the node UID and its public key, before subsystem copies
can be installed at the new node. (This simple task requires supervision by the users

to ensure that the proper public key is installed.)

5.3 Multi-TRM Computer Systems

Although the third-party computer approach meets the security requircments
established for multi-vendor systems, it does require the vendors and clients to trust

the third-party supplier. Moreover, it may require the supplier to disclose his

ls'I‘rojun Horse programs could still be a problem here, but at least the user can cxamine the
source code (perhaps using program verification tools) in an attempt to locate any Trojan Horses.

226

e P RSOV SR S

——._———————-————--

I

Multi-Vendor Systems and Client Security Requirements

hardware and software designs and make his system available for inspection in order
to satisfy the concerns of the vendors and clients. The problems related to trusting a
third-party supplier can be avoided if each vendor supplies his own security relevant
hardware and software. This vendor-supplied hardware and software can be
organized into a computer system that operates much like a distributed system in
microcosm. Each vendor is represented by his own TRM (acting as a node) and the
client controls interactions among these nodes and access to shared system
resources. In this fashion each vendor is responsible for meeting his own security
requirements through the hardware and software encapsulation mechanisms he
provides, and the clicnt confines the external software through the use of hardware
and soitware that is completely controlled by him. This approach retains the
simplicity of single-vendor systems yet provides the functionality of multi-vendor

systems as achieved in the third-party VMM design.

5.3.1 Configuration Options for the Multi-TRM approach

The primary drawback associated with this approach is the cost of providing
duplicate TRM-packaged hardware, one system per vendor. However, if the cost of
these systems can be made sufficiently small relative to the anticipated revenues
from sales or rental of proprictary software, this approach may be economically
feasible and acceptable to both vendors and clients. The need to minimize costs
strongly suggests the use of encrypted storage designs since they involve only one
TRM and can share storage outside the TRM. The TRM designs of SYSTEM G
and SYSTEM H are the most promising candidates as they yicld the smallest, least
expensive TRMs and offer the greatest opportunity for storage sharing. Using
cither design, the (vendor-supplied) TRMs share secondary and T&A storage and
170 devices (terminal, net interface, ctc.) under client control. Using the design of

SYSTEM G, primary memory is shared only as a medium for parameter

227

Mulu-Vendor Systems and Client Sccurity Requirements

cpPU E CPU E
P-MEM P-MEM
ACBC
CPU l
P-MEM S-MEM* T&A* other peripherals
System |

Figure 5-2: A Single Bus Multi-TRM System Configuration

transmission between processors, i.e., physically unprotected primary memory is
provided primarily for use by the client-supplied processor since cach TRM
contains built-in primary memory. A multi-TRM system based on the design of
SYSTEM 11 could share all primary memory among all the processors (client and

vendor). Figures 5-2, 5-3 and 5-4 show three multi-TRM system configurations.

228

«

Mulu-Vendor Systems and Client Security Requirements

CPU 3 CPU 3
P-MEM P-MEM
ACBC
CPU l
S-MEM* T&A* other peripherals
P-MEM
System J

Figure 5-3: A Dual Bus Multi-TRM System Configuration

The first two configurations, SYSTEM I and SYSTEM J, illustratc TRMs with
built-in primary memory connccted to single and dual bus systems, whercas the

third configuration, SYSTEM K, shows TRMs sharing primary memory with the

client processor in a dual bus system. All three configurations require essentially the

Multi-Vendor Systems and Client Security Requirements

CPU s

- w

CPU

SS| SSi

ACBC ACBC
CcPu { H 5{]

S-MEM* T&A* other peripherals

P-MEM*

System K

Figure 5-4: Another Dual Bus Multi-TRM System Configuration
same access control mechanisms to enforce confinement of external software.
(Remember, cncapsulation is provided by the TRM-packaging and encrypted

storage security mechanisms described in Chapter 4, both of which are vendor-

230

W

Multi-Vendor Systems and Client Security Requirements

supplied). The access control requirements here are generally the same as in the
VMM design and the mechanisms used to achieve them may be quite similar; only
the implementation of the mechanisms is different here. [n order to maximize the
use of off-the-shelf system components, e.g., disks and 170 devices, an access control
bus coupler (ACBC) is employed to connect TRM bus(ses) to the main system
bus(ses). The alternatives, enforcing access control at the bus interface to cach
shared resource or at cach TRM-bus interface, would require additional specialized
hardware. Moreover, access control hardware may introduce some delay in bus
transactions and the ACBC design imposes this delay only on accesses to shared

resources by TRMs, i.e., it nced not affect performance of the client processor.

An ACBC is the dual of a secure bus coupler (SBC), i.c., the ACBC protects client
equipment from attacks by vendor TRMs in much the same fashion that an SBC
protects TRM-packaged vendor equipment from client attacks. An ACBC filters
traffic on the bus(ses) connecting shared resources and the client-supplied processor,
so transactions local to those components are not repeated on the TRM bus(ses).
The ACBC also controls TRM access to primary memory, secondary and T&A
storage devices and various 170 devices, ¢.g., the terminal and the network interface,
as directed by the client. To properly enforce access control, each TRM must be
rcliably identified to the ACBC and confinement requires that transactions
involving one TRM must not be passively or actively wirctapped by other TRMs.
One cannot simply conncct multiple TRMs to a single, conventional bus since such
a bus does not preclude passive and active wiretapping attacks by other TRMs on
that bus. Thus each TRM has its own short bus scgment(s) connecting it to the

ACBC(s) to prevent these attacks by other TRMs.

Since access control details for some devices may be quite complex, the ACBC
can be simplified by off-loading some tasks onto the client processor, i.c., letting the

client processor assume the more complex functions provided by a VMM. To

231

Multi-Vendor Systems and Client Sccurity Requirements

facilitate communication with the client processor/ VMM, the ACBC can map a
| portion of the address space of each TRM into a distinct region of the shared
primary memory (even if the TRMs are configured with built-in primary memory).
Secondary storage may be divided among the TRMs and the client by adopting the
mini-disk concept described earlier. The client processor can maintain the
allocation information needed to simulate the mini-disks and it can load registers in
the ACBC to reflect this emulation when a TRM requests mounting of a mini-disk.
The client processor can translate requests and load appropriate registers in the

ACBC to achieve the desired access control policy. In this fashion the ACBC design

is kept simple and its checking of addresses in bus transactions can be accomplished
quickly, yet a wide range of complex access control functions can be provided. This
same technique can be applied to the mediation of network communication. If
there is no need to monitor the access of a given TRM to the network, the ACBC
can be directed to allow unlimited access and, if close monitoring is called for, the
ACBC can require the TRM to forward messages through the client processor

where they can be inspected and appropriately constrained.

Access to other shared resources, e.g., the terminal and other local 1/0 devices is]

gencrally provided on an all-or-nothing basis and is easily controlled by registers in

the ACBC. To control access to shared primary memory, some form of mapping
' must be applied to TRM memory references. One or two pairs of base and bounds
registers can be provided in the ACBC for each active TRM to provide mapping
and access control. (In SYSTEM K there are two ACBCs, one connected to the
main system 1/0 bus and the other to the memory bus coupler, and access control
responsibilities are divided among them accordingly.) For shared resources other
than primary memory, the delay imposed by an ACBC should not significantly
degrade system performance due to the inherent delay in accessing those resources.
In SYSTEM I and SYSTEM J the TRMs use shared primary memory only for

inter-TRM communication and for service requests to the client processor, so the

delay imposed by the ACBC should not seriously affect performance.
232

. - M

Muldu-Vendor Systems and Client Security Requirements

In a configuration such as SYSTEM K, the delay introduced by this mapping
could become a problem. Moreover, the encrypted storage TRM design employed
in that configuration requires cryptographic refresh of primary memory by one of
the TRM SSis. The cryptographic refresh process generates an enormous amount

i of bus traffic, which precludes single bus configurations for cither the TRM or the
main system. Even using a dual bus configuration for both the TRMs and the main
system, it may be impractical to carry out the cryptographic refresh for more than

one TRM simultaneously. Moreover, the refresh may effectively preclude any

significant activitics by the client processor due to the demands on primary memory
bandwidth. Thus, in SYSTEM K, a TRM probably cannot execute software in a
"background"” mode while the client processor performs other processing. Even if a
separate, shared primary memory were established solely for the use of TRMs,
software in two TRMs probably could not interact for the same reason. This

severely limits the utility of systems configured in this fashion.

The cost analysis discussion presented at the end of Chapter 4 suggested that one
could provide 64-256 Kbytes of primary memory in the TRM (using 64 and 256-
Kbit memory chips respectively) for fess than the cost of hardware needed to
support encrypted primary memory. Thus cconomic considerations also may argue
for adoption of private memory TRMs in applications where primary memory size
restrictions are not a problem. Private memory TRMs require only one ACBC, as
opposed to the two in SYSTEM K, reducing system cost and further maximizing the
use of off-the-shelf components. Since the single ACBC in these systems only
controls access to peripherals and the shared primary memory uscd for inter-TRM
and client processor communication, it need not cxhibit extremely fow delay,
making it simpler and cheaper to construct. Morcover, primary memory size
limitations in these TRMs may be amcliorated by use of low access time sccondary
storage, ¢.g., bubble memorics, as paging/swapping devices. Thus, cven though

TRMs using cncrypted primary memory offer greater growth potential since the

233

Multi-Vendor Systems and Client Security Requirements

shared primary memory is readily expanded, TRMs with built-in primary memory

may prove more appropriate for multi-TRM systems.

5.3.2 A Hybrid Scheme for Distributed Systems

The multi-TRM design secems especially well suited to use with proprietary
software since it avoids problems of trust that arise in the third-party supplier
approach. However, in the context of distributed systems, external software written
by members of the user community probably cannot take advantage of the mult-
TRM scheme inits pure form. First of all, it is impractical to provide at cach user
node a separate TRM for the external software supplied by cach other user.
Morcover, this scheme would not provide a basis for a distributed subsystem that
includes its writer as a client! Rather, the multi-TRM approach can be used in
conjunction with the third-party approach in the following fashion. Each user node
can employ a multi-TRM configuration in which one of the TRMs is provided by a
third-party supplicer and is devoted to execution of subsystems written by members
of the user community. The installation server technique described in the preceding
section is employed for distribution of these subsystems. In this fashion the
advantages of multi-TRM designs are available to thc users but the special
functionality required for secure distribution and operation of user-written

subsystems is retained.

5.4 Conclusions

This chapter explored the problem of confining external software (to meet the
client sccurity requirement of preventing fcakage of client information) and the
related problem of supporting external software from multiple vendors in a single

computer system. In developing protection mechanisms to solve these problems,

234

™ o
s o . S ea e e ey v .
t

Multi-Vendor Systems and Client Security Requirements

several important concepts and techniques were introduced. The two problems
noted above can be unified by viewing the client as a vendor with some extra
' privileges that allow him to control access to shared computer system resources.
Controlling access to shared resources is a major part of confining external software
since network access provides the primary means of leaking client information. Two

approaches to implementing multi-vendor computer systems were developed: use

of a third party 1o supply a TRM and controlling software and use of multi-TRM

computer systems,

The third-party supplier approach requires no new hardware technology; it is
applicable to all of the designs developed in Chapters 3 and 4, but it does require
both clients and vendors to trust third-party suppliers. A virtual machine monitor
(VMM) can be used to encapsulate external software provided by various vendors
(and the client) and to provide the client with a means of controlling access to
system resources. The performance degradation resulting from use of a VMM
should be acceptable in most application environments. A protocol based on
public-key ciphers can be employed so that the third-party supplier does not have
access o the external software distributed to the systems he supplics. This protocol
can be enhanced so that users can acts as vendors of their own subsystems in the

distributed system context.

The multi-TRM approach to confining external software supplied by one or more
vendors essentially realizes a VMM design using separate processors (and, perhaps,
private primary memories) for cach vendor and the client. This approach minimizes
the need for trusted third parties at the expense of some additional hardware: one or
two access contrel bus couplers (ACBCs). The ACBCs filter bus transactions
between the busses for the vendor TRMs and the bus(ses) of the client’s processor.
To keep the ACBCs simple, access control policy decisions are made by the client’s

processor, which loads appropriate registers in the ACBC(s) to enforce these

235

Multi-Vendor Systems and Client Security Requirements

decisions. If the cost of the TRM-packaged components is suitably small, this
approach may prove more acceptable to clients and vendors, because of the
increased autonomy provided. Performance degradation associated with
configurations implementing this design also should be acceptable for most
applications. Moreover, such performance degradation can be restricted largely to
vendor software; it should not appreciably affect client programs, due to the
existence of a scparate client processor and the positioning of access control

hardware in the system configuration.

236

——-———-———-—-——__.____H

Chapter Six

Conclusions and Topics for Further Research

This thesis has developed and analyzed protection mechanisms for encapsulating
and confining externally supplied software in personal and small business
computers and certain types of distributed systems. "This chapter summarizes the
results of this thesis, reviewing the key coneepts and techniques developed herein,
evaluates the encrypted bus and encrypted storage approaches with respect to the

criteria established in Chapter 1 and discusses the applicability and lmitations of

2 these approaches. ‘The chapter concludes by suggesting some topics tor further
! rescarch.
6.1 Review

Chapter 1 established vendor and client sceurity requirements associated with
external software. These requirements are derived from those desveloped for
protected subsystenms in centralized computers and thus are more stningent than
those that ¢ae might propose if only proprictary software were to be protected. as
indicated in the review of rclated work. For example, other authors have not
addressed the problem of detecting modification of external software (including
sensitive databases constructed by the software during exccution) or the problem of
confining such software. The data integrity guarantee supports features such as
sophisticated billing and revocation procedures for proprictary programs and is
essential for many distributed system applications (see Chapter §). These extensive,

stringent sccurity requirements yicld protection mechanism designs that sct this

thesis apart from previous work.

237

Conclusions and Topices for Further Research

in Chapter 2 the concept of tamper-resistant modules (FTRMs) was explored in
Jdetail. The TRM concept is important since it embodics all of the physical
protection characteristics that are a function of the level of sceurity required in a
particular environment. In this fashion none of the other protection mechanisms
developed throughout the thesis need deal with physical protection issucs. ‘The
monolithic-TRM design introduced in Chapter 2 illustrated some of the limitations
of TRM packaging, motivating the use of cryptographic technigues to overcome
these deficiencies. This design also served to introduce the secure bus coupler
(SBC) in its role as a filter of transactions at the bus interface to the main TRM. The
basic features of the SBC appear later in the cryptographic bus interface (CBI) and

the secure storage interface (SSI) on the main TRM.

The encrypted bus approach developed in Chapter 3 introduces several important
techniques in treatment of bus communication between TRMs as a special problem
in communication security. The stream cipher mode developed in that chapter has
been carefully designed to minimize detay and maximize throughput. In particular,
this mode permits multiple crypto devices to be used in parallel to generate crypto
bit strcam at very high rates. The shortened DES calculation employed for CEDCs
enables simple secure transactions to proceed at relatively high rates. Use of a
distinct crypto bit stream for each simplex channel supports asynchrony in secure
transaction scenarios. This is critical to the climination of authentication checks at
the slave during simple secure read transactions (enhancing throughput) and it
allows control and data transfer connections to be combined. Finally, aggregate
secure transactions reduce overhead on data transfers between primary memory and
TRM-packaged storage devices by transmitting a cumulative CEDC at the

completion of the transfer, rather than transmitting a CEDC with each transaction.

Chapter 4 employs cryptographic techniques in a fashion quite different from

Chapter 3, and the encrypted storage approach introduces several important

238

Conclusions and Topics for Further Research

concepts and techniques. Version tags (VTs) are employed to form version-
differentiated names for cryptlographically transforming storage units, and a
protected version tag table (VTT) provides a basis for verifying the timeliness of
storage units fetched by Read operations. For transfer and archival storage, the
archival VTT and its associated update table provide a robust mechanism for
enforcing reloading constraints for most-recent-only and non-reloadable files. ‘The
four-level hierarchic decomposition of the sccondary storage VI and appropriate
caching of portions of this hicrarchy make the use of cnerypted secondary storage
feasible. Finally, cryptographic refresh for encrypted primary memory permits the

use of small VTs with cache lines, significantly reducing the amount of memory

devoted security overhead.

Although Chapter 3 is short in comparison to Chapters 3 and 4, it includes scveral

important designs (at a high level). The problems of confining external software

mslaiiosi

and supporting such software from multiple vendors in a single computer system are
unified by viewing the client as a vendor with some extra privileges in a multi-
vendor system. The use of a TRM-based system running a third-party supplied
virtual machine monitor (VMM) achieves the necessary confinement and
encapsulation while minimizing the amount of trusted software. ‘The public-key
cipher protocol used in distributing external software to these computers (and in
installing secure distributed subsystems) is critical to the client acceptance of the
third-party approach. The multi-TRM system approach avoids the need for trusted
third parties and, if cconomically feasible, it is probably the preferred approach.

Both approaches allow the vser to mediate access to the network interface, the ﬁ

primary means by which information can be "leaked” outside the computer.

’ |
Conclusions and Topics for Further Research

6.2 Comparative Evaluation of the Encrypted Bus and
Encrypted Storage Approaches

The primary goal of this thesis has been the design of mechanisms o protect
externally supplied software in small computers. Chapter 1 established several
criteria for evaluating mechanisms proposed to achieve this goal: decentralization,
effectiveness, generality, flexibility, low equipment cost, minimal performance
impact and transparency. The protection mechanisms developed in Chapters 3 and
4 achieve this goal in different ways and meet these criteria with varying degrees of
success. Both encrypted bus and encrypted storage designs are decentralized
approaches 10 the external software protection problem. These designs employ
small computers installed at user sites and do not require any "central” computers in
executing the external application software. The only time a central system might ’
be involved is in the distribution of external software or for periodic accounting of

rented/leased proprictary software.

With respect to preventing unintended exposure of information, the techniques
developed in the thesis are fairly effective, i.e., if TRMs perform as specified, then
only cryptanalysis or traffic analysis will yicld information about the data being
protected. 1f a suitably strong cipher is employed, then only traffic analysis remains.
Neither the encrypted bus nor encrypted storage approach provides complete T
protection against traffic analysis, but one can limit opportunities for traffic analysis
by selecting configurations that package most of the security relevant parts of the

system in a singlc TRM. Encrypted bus designs provide greater protection against

traffic analysis than corresponding encrypted storage designs since addresses in bus
transactions are concealed in the former but not in the latter. For most applications,
however, traffic analysis will not be viewed as a serious threat, especially at the level
of T&A and secondary storage transfers. With respect to detecting malicious

modification of information, the mechanisms proposed in Chapters 3 and 4 are

240

et g s AN 30

Conclusions and ‘Topics [or Further Research

guite effective. An attacker has only a very small probability of circumventing these
mechanisms without being detected (depending on the size of the
EDC/CEDC/AICF cmployed).

The designs proposed in this thesis exhibit a fair degree of generality and
flexibility. The protection mechanisms meet the security requirements for a wide
variety of apphications. Although these mechanisms have been described in the
context of small computers based on a simple architecture, the general techniques
developed here are applicable to a wide range of system architectures,

configurations and cquipment speeds. This is especially true of the encrypted

storage designs for secondary and T&A storage as they are independent of most

configuration and architectural details. Encrypted storage designs also offer
substantial flexibility in equipment sclection since they employ off-the-shelf
cquipment almost exclusively. Some flexibility is lost in encrypted bus designs due
to possible limitations imposed by TRM packaging of non-volatile (and

demountable) storage media.

Encrypted storage designs involve only one TRM and onc or two SSls whereas
encrypted bus designs involve several TRMs and CBIs in most configurations. Even
though encrypted storage designs waste a certain percentage of storage (that devoted
to VTTs), this overhead is not likely to offset the added TRM packaging costs
encountercd by comparable encrypted bus designs. This is almost certainly true for
systems in which sccondary and T&A storage are not contained in the main TRM
and is probably true when primary memory is also outside the main TRM. (This
assumes TRM packaging analogous to the packaging employed for commercial
cryptographic equipment.) With respect to performance, both designs introduce
onfy a negligible delay in DMA transfers involving secondary or T&A storage not
contained within the main TRM. The encrypted bus designs do hold an cdge over

encrypted storage designs in systems where primary memory is outside the main

241

—'__“'—'-'w—-'-_“’“

Conclusions and Topics for Further Rescarch

TRM. (The expected increase in effective average primary access time is 0-9% for

the former versus 9-18% for the latter.)

The encrypted bus approach also exhibits greater transparency than the
encrypted storage approach. Aside from initialization procedures and recovery :
from some errors, most of the protection mechanisms are managed exclusively by
the CBIs in the encrypted bus designs. In cncrypted storage designs, the TRM
operating system must manage VTTs for secondary and T&A storage, thus affording
diminished transparency. For both approaches, applications must distinguish
between files that must be protected versus those which may be stored unprotected,
and the reloading constraints associated with protected files must be explicitly
indicated. However, these file characteristics are obvious at the time the application
is written and are casily specified as part of an operating system file creation

operation,

Thus, in comparing the two approaches to protecting external sofiware, the
encrypted bus approach offers some advantages with respect to transparency,
performance and susceptibility to traffic analysis whereas the encrypted storage
approach provides greater generality, flexibility and reduced cost. Within a specific
approach, system configuration choices offer a tradeoff of flexibility versus
susceptibility to traffic analysis. Although the selection of a system design depends
on requirements specific to an application environment, one can make some general
observations. In both approaches, the cost of providing primary memory outside
the main TRM is probably too high considering the slight gain in flexibility afforded
by such configurations. When primary memory is contained in the main TRM,
there is little performance difference between the two approaches. For most

applications, the preferred configuration is probably an encrypted storage system

with sccondary and T&A storage outside the TRM. The cost, flexibility and

generality advantages of this configuration probably outweigh the traffic analysis

242

Conclusions and Topics for Further Rescarch

susceptibility and the reduced transparency afforded by this configuration. This

configuration is also well suited to multi-vendor, multi-TRM designs.

6.3 Applicability and Limitations

The protection mechanisms developed in this thesis have been designed for the
evpress purpose of meeting vendor and client security requirements associated with
external software in the context of personal and smail business computers and
certain distributed systems. The characteristics of these computer systems were
cstablished in Chapter 2. One can ask whether the protection mechanisms
developed in this thesis are especially sensitive to the assumptions embodied in the
system model and whether these protection mechanisms are relevant to other

applications. The answers to these questions are no and ycs, respectively.

The protection mechanisms developed in Chapters 3 and 4 are applicable to
computer systems that do not precisely match the system model. For example, in
the encrypted bus approach, the system word size and the number of bus lines
employed do not critically influence the protection mechanism designs. Such
differences are accommodated by changes in the amount of cryptographic bit stream
generated by CBIs, but this does not significantly influence the designs, only some
implementation parameters. Variations in the relative timing of the system
components, including the cryptographic devices, do not seriously affect these
designs although they may require minor changcs, e.g. more or fewer crypto devices
may be required. Substantial differences in the structure of bus transactions may
require some re-enginecring, but the design principles developed in Chapter 3

should still be relevant.

Most of the encrypted storage designs are even less influenced by changes in

system characteristics such as word size or device timing, and these designs are

243

Conclusions and Topics for Further Research

gencrally insensitive to details of bus operation. For secondary storage, the most
critical parameter is the scctor size. Changes in this parameter influence the

percentage of space devoted to VITTs and EDCs but, unless the sector size changes

drastically, the impact on design features such as the V1T should be negligible,
Only in the case of encrypted primary memory configurations are word size, cache 1
operation and tuming details critical parameters. Here again, modifications to
accommodate changes in these parameters should be possible within the context of
the design principles clucidated in the chapter. Morcover, since there is only one
TRM in these designs, the impact of changes in the protection mechanism details

influences few components. The bottom line here is that the most promising design,

SYSTEM F, is relatively insensitive to most system characteristics. In fact, since the
transfer rate of many current T&A and secondary storage devices is less than 10
Mbits/s and the Fairchild DES chip set is capable of over 13 Mbits/s throughput,
computer systems based on the SYSTEM F design could be constructed with

current technology!

Finally, the protection mechanisms developed here can be employed for several
purposes other than those described in Chapter 1. For example, one might use

these mechanisms to re-enforce physical security at sites. These measures cannot

disclosure and undctected modification of th- information. Thus, one might
purchase a TRM-packaged computer to counter these threats in environments
where controlling physical access to the computer facilities is difficult or expensive
to achicve. Some distributed systems cmploy a file server that provides basic file
storage facilitics that users can access from local nodes. The encrypted storage
approach mechanisms for secondary and T&A storage can be applied by the user
nodes to protect information stored at these file servers. Even some of the
specialized cryptographic techniques developed in Chapter 3 may be applicable to

i
?
I
i
%
} prevent destruction of information stored in a computer but they can prevent
} future communications systems that exhibit very high throughput and very low

:
| 244
]

Conclusions and Topics for Further Research

delay and which deal in very small messages. The imaginative reader may discover

even more applications for these protection mechanisms.

6.4 Topics for Further Research

Several topics discussed in this thesis merit further investigation. First, the
engineering of TRM packaging should be explored in depth. Details of this
packaging will vary depending on the level of protection required. i.c., based on the
anticipated threat environment, and there are a number of problems furking in this
arca. The technology cemployed in o existing devices such as conunercial
cryptographic cquipment is probably appropriate for some threat environments, but
both more and less elaborate packaging must be developed. An intriguing problem
is the engincering of TRM packaging for a VLSI implomentation of a processor,
primary memory and SSI in an encrypted storage design for low to moderate
security environments. Very low cost TRM packaging of this equipment might be
possible if it were reduced to a just a few silicon wafers combined in a single
package. (One might store keys in charge-coupled devices and rely on the inability
of an attacker to disassemble the package without losing the charge on the CCD)
At the other extreme, in very high security applications, TRM packaging may have
to include devices that destroy the TRM, and perhaps the would-be attacker, if
tampering is detected. This type of packaging is probably unacceptable to the
Consumer Products Safety Commission for home personal computers, but it may be

appropriate in some military applications.

Additional work also is required in providing detailed designs for the hardware
that implements the protection mechanisms developed in the thesis. For example,
the functions of secure bus couplers (SBCs), cryptographic bus interfaces (CBls),

secure storage interfaces (SSlIs) and access control bus couplers (ACBCs) were

245

Conclusions and Topics for Further Research

described, but additional engincering design is required before a TRM-based
system can be constructed using these devices. In large part these details are a
function of bus characteristics, so a specific bus design must first be adopted, but
other engineering questions must be resolved as well. For example, design details of
bus couplers with integrated CBls or SSIs and the ACBC must be examined with
respect to buffering requirements and interaction of the control logic associated with
cuch bus attached to the coupler. Similar design refinements are required for
version tag table (V1) management at secondary and primary storage levels. For

example, the secondary storage VT hierarchy should be tailored to the file system.

For multi-vendor computer systems there are several problems that require
additional research. If a secure virtual machine monitor (VMM) is used to isolate
software from different vendors and the user, then additional rescarch is needed in
the area of provably secure VMM design. Spccifications of monitor calls, including
those employed in inter-VM communication, must be developed if the secure VMM
approach is adopted. These calls must be standardized so that vendors can produce
software for exccution in this virtual machine environment. If multi-vendor
computer systems are constructed using multiple TRMs, vendors are relatively
unconstrained in their choice of processor and memory design. However, similar
standardization requirements arise with respect to communication between TRMs
and the user processor operating system since that OS performs many VMM-like
functions for the TRMs. Moreover, if the ACBC design is to be kept simple, it is
probably necessary for TRMs to employ some standard bus interface. Thus, if
multi-vendor systems are to become a reality, some standardization is required for
both the VMM and multi-TRM designs.

Finally, if the protection mechanisms developed in this thesis are applied to
computer systems that differ radically from those described herein, additional

rescarch will be required to work out the implementation details for these systems.

246

Conclusions and Topics for Further Rescarch

Similarly, adaptation of the protection mechanisms to applications such as the
protection of information stored at distributed system file servers will require

further investigation.

R LR I A R AR W i+ on DI SAYS QI RIS < o ST < Wl AP 2 A il ol BB o

247

E Appendix

Expansions of Acronyms Used in the Thesis

The following table provides expansions for acronyms used extensively in this

thesis,

ACBC access control bus coupler

AICF authenticityZintegrity check field

CBC ciphertext block chaining

CBI cryptographic bus interface

CC conventional cipher

CEDC cryptographic error detection code

CFB cipher feedback

DES Data Encryption Standard

ECB clectronic code book

EDC error detection code

v initialization vector

PCBC plaintext-ciphertext block chaining
z PKC public-key cipher
| SBC secure bus coupler

SS1 secure storage interface !

248

T&A

TRM

uiD

VMM

VIT

transfer and archival
tamper-resistant module
unique identifier

virtual machine monitor
version tag

version tag table

249

References

1. Best, R. Microprocessor for Executing Enciphered Programs. U.S. Patent
4,168,396. Issued Scptember 18, 1979.

2. Bhandarkar, D. and Juliussen, J. Semiconductor Technology: Trends and
implications. Compuier Architecture News 7, 1 (August 1978), 4-14.

3. Branstad, D.K. Privacy and protection in operating systems. Computer 6, 1
(Jonuary 1973), 43-46.

4. Campbell, C. Design and Specification of Cryptographic Capabilities.
Computer Security and the Data Encryption Standard, National Burcau of
Standards, 1978, pp. 54-60. NBS Special Publication 500-27

5. Casey, L. and N. Shelness. A Domain Structure for Distributed Computer
Systems. Proceedings Sixth Symposium on Operating Systems Principles, ACM,
November, 1977, pp. 101-108.

6. Clark, D., Lampson, B. and Pier, K. The Memory System of a High-
Performance Personal Computer. Xerox PARC, Palo Alto, CA.

7. d'Oliveira, C.R. An Analysis of Computer Decentralization. Technical Memo
MIT/1.CS/TM-90, M.L.T. Laboratory for Computer Science, October, 1977.

8. DeMillo, R., Lipton, R. and McNeil, L. Proprictary Software Protection.
Foundations of Secure Computation, 1978, pp. 115-129.

9. pdpll Peripherals Handbook. Digital Equipment Corporation, 1976.
10. VAX 117780 Hardware IHandbook. Digital Equipment Corporation, 1978.

11. Flmquist, K. er al.. Standard Specification for S-100 Bus Interface Devices.
Computer 12,7 (July 1979), 28-52.

12. Ehrsam, W.F., S.M. Matyas, C.H. Meyer and W L. Tuchman. A cryptographic
key management scheme for implementing the Data Encryption Standard. /BM
Systems Journal 17, 2 (1978), 106-125.

250

References

13. Gold, B. eral.. A Sccurity Retrofit of VM/370. Proceedings of the 1979
National Computer Conference, Vol. 48, AFIPS, 1979, pp. 335-344.

14. Hinden, H. Encryption chips sort themselves out. Elecironics 53, 11 (June
1980), 96-97.

15. Kelly, P. Public Packet Switched Data Networks. International Plans and
Standards. Proceedings of the IEEFE 66, 11 (November 1978), 1539-1549.

16. Kent, S.T. Encryption-Based Protection Protocols for Interactive
Uscr/Computer Communication. Proceedings Fifth Data Communications
Symposium, IEEE, Scptember, 1977, pp. 5-7 - 5-13.

17. Kent, S'1. A Comparison of Some Aspects of Public-Key and Conventional
Cryptosystems. 1CC79 Conference Record, IEEE, June, 1979, pp. 4.3.1-4.3.5.

18. Keys, R. and Clemens, E. Security Architecture Using Encryption. Approaches
to Privacy and Security in Computer Systems: Proceedings of a Conference Held at
the National Burcau of Standards, National Burcau of Standards, September, 1974,

pp. 37-41. Available as NBS Special Publication 404.

19. Lampson, B.W. A Note on the Confinement Problem. CACAM 19, 5 (May
1976), 251-265.

20. Lindsay. B. and V. Gligor. Migration and Authentication of Protected Objects.
Rescarch Report RJ-2298, IBM, August, 1978.

21. Miller, R. et al.. Legal Protection of Computer Software: An Industrial Survey.
Harbridge House, Inc., November, 1977. Available through NTIA as PB-283 415.

22. MC68000 16-Bit Microprocessor User's Manual (Preliminary Edition).
Motorola Semiconductor Products Inc., 1979,

23. --. Data Encryption Standard. Fedceral Information Processing Standards
Publication 46, National Burcau of Standards, January, 1977,

24. Oshorne, A. How About Low-Cost Application Software? The Answer Lics in
Books. Digest of Papers COMPCON Spring 78, IEEE, 1978, pp. 46.

25. Pouzin, 1. and Zimmermann, H. A Tutorial on Protocols. Proceedings of the
IEEE 66, 11 (November 1978), 1346-1370.

251

References

26. Rivest, R.L., A. Shamir and 1.. Adleman. A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems. CACAM 2/, 2 (February 1978), 120-126.

27. Rivest, R., Adleman, L. and Dertouzous, M. On Databanks and Privacy
Homomorphisms. Foundations of Secure Computation, 1978, pp. 169-177.

28. Rivest, R.1.. performance of a prototype RSA algorithm implementation.]
personal communication,

29. Saltzer, JLH. and M.D. Schroeder. ‘The Protection of Information in Computer
Systems. Proceedings of the IEEE 63,9 (Scptember 1975), 1278-1308.

30. Schroeder, M. and Saltzer, . A hardware architecture for implementing
protection rings. CACAM 15, 3 (March 1972), 157-170.

31. Schroeder, M.D. Cooperation of Mutually Suspicious Subsysiems in a Computer
Utility. Ph.D. Th., Massachusctts Institute of echnology, September 1972, Also
available as MAC TR-104,

32, Shannon, C. Communication Theory of Secrecy Systems. Bell System
Technical Journal 28, 4 (October 1949), 656-715.

33. Svobodova, 1... Liskov, B. and Clark, DD. Distributed Computer Systems:
Structure and Semantics. Technical Report MIT/LCS/TR-215, M.LT. Laboratory
for Computer Science, March, 1979,

252

Biographical Note

Stephen Thomas Kent was born in New Orleans, Louisiana, on January 25, 1951.
He graduated from Ridgewood Preparatory School, Metairie, Louisiana, in 1969.
He was class valedictonan, editor of the school newspaper and president of the Beta
Club.

From 1969 through 1973 he attended Loyola University of New Orleans as a
National Merit Scholar. As a freshman he was a recipient of an Alpha Sigma Nu
honor key and was clected to Dobro Slovo, Pt Mu Epsilon and Delta Epstlon Sigma
honor socicties, serving as president of the last two in his senior year. Mr. Kent
carned a B.S. degree simma cum laude, majoring in mathematics. and received the
Rev. P.A. Roy Memorial Award. He was also awarded the Gold Medal for
Research by the New Orfeans branch of the Scientific Rescarch Society of America
for his contrnibutions to the development of software for physical chemistry research
applications.

In 1973 and 1974 Mr. Kent attended graduate school at Tulane University, studying
mathematics, befoie becoming a graduate student in computer science at the
Massachusetts Institute of Technology from 1974 through 1980. From September
1973 through June 1976 he was supported as a National Science Foundation
Graduate Fellow. In June 1976 he was awarded the SM. degree from the
Department of Electrical Enginecring and Computer Science and the Electrical
Engineer degree in February 1977, His SM. and E.E. thesis was entitled
"Fneryption-Based Protection Protocols for Sccure User-Computer Communication
over Physically Unsecure Channels.”

From September 1977 through August 1980 My, Kent served as a research assistant
in the Computer Systems Rescarch Group of the MALT. Laboratory for Computer
Science. In the summer of 1976 he worked for the Rand Corporation in Santa
Monica, California, as a consultant on communication sccurity matters. In the
summers of 1977 and 1978 he worked for Bolt Beranck and Newman Inc.
performing rescarch in the arca of security in computer communication networks.
Since 1977 Mr. Kent has lectured in the United States and Furope on the topic of
security for computer communication networks for The George Washington
University, M.L'T., the University of Southern California and several private firms.

253

Mr. Kent is a member of the Association for Computing Machinery und its special
interest groups on Operating Systems and Communications. He is also a member of
the Sigma Xi scientific honorary society.

In September 1980 Mr. Kent became a member of the technicut staff at Bolt
Beranck and Newman Inc. He is married to Rachel Baribault Kent.

